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ABSTRACT 

 
A one-step hybrid method is developed for the numerical approximation of second order initial value problems of ordinary 
differential equations by interpolation and collocation at nonstop and step points respectively. The method is zero stable and 
consistent with very small error term. Numerical experiment of the method on sample problem shows that the method is more 
efficient and accurate than the results obtained from our earlier methods. 
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1. INTRODUCTION 
 

The direct integration of higher order initial value 
problem of ordinary differential equations has been widely 
discussed in the literature [2, 10,11]. There is in fact, a 
consensus that this method of solution is more convenient and 
accurate than the reduction order method; which implies that 
the problem will be reduced to a system of first order 
problems and solved with suitable first order methods. 

 Phenomena arising from physical sciences, 
engineering, economics, etc, are mostly modeled as initial 
value problems of ordinary differentials. Very often, these 
models do not have closed form solutions which necessitates 
the development of numerical methods to approximate their 
solutions. Indeed, a number of methods have been proposed 
in the literature, [6,7, 8,12,13]. 

The method proposed in this paper, is an extension 
of our previous results; where we used one and two nonstep 
points respectively, to augment a one-step scheme for the 
solution of second order initial value problems of ordinary 
differential equations. Here, three nonstep will be 
incorporated in the development of the new one-step scheme. 
The resulting scheme allow function in evaluations at nonstep 
points like the Runge-kutta methods however, with fewer 
number of function evaluations per step. The method is 
implemented as a simultaneous integrator using a modified 
block method that generates values at a block of points and 
their derivative values as well. No other method is required to 
generate staring values for the integration process. 

The paper is arranged as follows; in section two we 
present the derivation and specification of the method 
followed by the analysis of the method in section three. In 
section four, the method is experimented on sample problems 
and the results obtained are compared with our results in 
terms of the global error and time of computation.(ODE) of 
the form 
 
 
2. DERIVATION AND SPECIFICATION OF 

THE METHOD 
 
 In this section, a representation of a continuous one-step 
method is derived. In the sequel, the main method and other 
methods required to set up the block method will be 
generated. 
       Suppose we approximate the analytical solution of 
problem 

            ( ) ( )
( ) [ ]{ 0 1
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y f x y y x a b
y a y aζ ζ
′′= ∈
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         Where f  is continuous in [ ],a b , by a power series 
polynomial of the form 
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on the partition 0 1 1:N n n Na x x x x x b+∆ = < < < < < < =   
of the integration interval [a, b], with a constant step size h, 
given by 1 ; 0,1, , 1n nh x x n N+= − = −   
 

By carefully choosing and incorporating three nonstep 
points, , ,n u n v n wx x x+ + + ∈  { }1, :n nx x +    ( ), , 0,1u v w∈  in such a 
manner that the zero stability of the main method is 
guaranteed. We are able to interpolate (2), the Stormer-
Cowell way, at a sufficient number of points namely: 

, , , ,n ix i u v w+ =  to achieve our purpose and collocate (2) at
, 0, , , ,1.n ix i u wν+ =  

This way, we obtain a system of seven equations each degree 
at most six,(i.e m=6), as follows: 
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∑
 The system of equations ( ) ( )3 4−  is solved for the 
unknown parameters ; 0,1, ,6ja j =  . Now substituting these 
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values into (2)  yields a representation of a continuous 
implicit one-step hybrid method in the form: 
( ) ( ) ( )1 1

2 2
0 n nY x x y x yα α += +

                                 (5) 

                      
( ) 1 1

2 2

1
2

0
j n j n

j
h x f fβ β+ +

=

 
+ + 

 
∑  

 
where 𝑖 = 𝑢, 𝑣,𝑤;  𝛼𝑣(𝑥),𝛼𝑤(𝑥)  and 𝛽𝑗(𝑥)  are continuous 
coefficients, 𝑦𝑛+𝑗 = 𝑦(𝑥𝑛 + 𝑗ℎ)  is the numerical 
approximation of the analytical solution at 𝑥𝑛+𝑗 and 𝑓𝑛+𝑗 =
𝑓 �𝑥𝑛+𝑗 ,𝑦𝑛+𝑗 ,𝑦′𝑛+𝑗�. 
 
Now if we let 𝑢 = 1

4
, 𝑣 = 1

2
,𝑤 = 3

4
 and evaluate (5)  at 

𝑥 = 𝑥𝑛+𝑙 , 𝑙 = 0,𝑢, 1,  we obtain three discrete methods as 
follows:                 
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Our block method is set up by obtaining additional 

equations from evaluating the first derivative of (5); 

( ) ( ) ( )1 1
2 2
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′ ′′ = +  
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at  , 0, , , ,1n lx x l u v w+= = respectively. This yields five 
discrete derivative schemes as follows: 
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3. BLOCK METHOD 
 

The definition of the block method, adopted for the 
implementation of our scheme is a modification of the one in 
11. The modified definition vector notation is given, as: 

 
( ) ( ) ( )15m m m mh aY h Ey h dF y bF Yλ λ µ λ−  = + +   

where , , ,a b c d are constant coefficient matrices;  
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2 44
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λ is the power of the derivative in (9) and µ is the order of 

problem. 
 

 To set up our block method, (6-8) is combined with 
 equations (10) – (14) with the constant coefficient matrices 
 , , ,a b c d are obtained as  follows 
 

0 11520 7680 0 0 0 0 0
3840 7680 3840 0 0 0 0 0

0 3840 7680 3840 0 0 0 0
0 23040 23040 0 0 0 0 0
0 23040 23040 0 5760 0 0 0
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− − 
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Normalizing (15) yields the block solution: 
 
 ℎ𝜆𝐴̅𝑌𝑚 = ℎ𝜆𝐸�𝑦𝑚 + ℎ𝜇−𝜆[𝐷�𝑓(𝑦𝑚) + 𝐵�𝐹(𝑌𝑚)]      (16) 
 
Where 𝐴̅  is 8 x 8 identity matrix, 𝐸� ,  𝐷� and 𝐵�  are constant 
coefficient matrices. 

A single application of the formula generates 
simultaneously, the approximate solutions and their 
derivatives at the points 𝑥𝑛+14

, 𝑥𝑛+12
, 𝑥𝑛+34

, 𝑥𝑛+1 , as the 

following discrete schemes 
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The one-step block method is implemented as a 

simultaneous integrator, without requiring other methods to 
supply starting values nor for the development of predictors, 
over the subintervals, [ ] [ ]0 1 1, , , ,N Nx x x x− of the partition

0 1 1:N N Na x x x x b−∆ = < < < < = . This way, the initial 
conditions are obtained at 1, 0,1, , 1.nx n N+ = −  
 
4. ANALYSIS OF THE BLOCK METHOD 
 

In this section, fundamental properties of the one-
step block method are discussed. 
 
4.1 Order and Error Constant 

 
In what follows, we will define, in the spirit of Awoyemi, et 
al [19], the linear difference operator associated with the one-
step block method with some modifications. We will proceed 
by first of all, recasting (15) as: 
 

            ( )2 25
ij ijn j n j

ij j
y h fλ λ λα β+ +=∑ ∑    

 
where , 0, , , ,1 and i j u wν λ= is the degree of the derivative in 
(9). 
 
Definition 1: The linear difference operator L assotiociated 
with (15)  is defined as: 
 

( ) ( ) ( ) ( )2; 26
i j n i j n

i j
L y x h y x jh h y x jhλ λα β ′′= + − +    ∑

 
where ( ), 0, , , ,1;i j u w y xν=  is an arbitrary test function 
which is continuously differentiable on [a,b]. Expanding 
( ) ( ) and n ny x jh y x jh′′+ + in Taylor series and collecting 

like terms in powers of h yields the linear equation: 
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( ) ( ) ( ) ( ) ( )
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1 21 2
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pp
p

p pp p
p p

L y x h C y x C hy x C h y x

C h y x C h y x+ ++ +
+ +

= + + +

+ + +



  
 
where they, ; 0,1,iC i =   are vectors. 
 
Definition 2: The one-step block method (15) and the 
associated linear difference operator (15) are said to have 
order p if 0 1 1 0pC C C += = = = and 2 0pC + ≠ . 

Definition 3: The term 2pC + called the error constant implies 
that the one-step block method (15) has local truncation error 
given by 

𝑡𝑛+𝑘 = 𝐶𝑝̅+2ℎ𝑝+2𝑦(𝑝+2)(𝑥𝑛) + 𝑂(ℎ𝑝+3)            (28) 

 Hence the block method from our calculation, is of order 
( )5,5,5,5,5,5,5,5 Tp = and has error constant 

( )26561 9 123 3 71 1
2 41287680000 645120 3670016 819200 368640 655360 1350, , , , , , T

pC + = − . 

4.2 Zero Stability, Consistency and Convergence 
Definition 4: The one-step block method (16) is said to be 
zero stable as 0h → if the first characteristic polynomial
( )zρ  , of (16) satisfies 

                

( )
( )

det

1
0

r

z zA E

z z µµ

ρ
−

 = − 

= −

=

                 (29) 

Where r is the order of the matrices , ;A E and the roots 

, 1, ,8sz s =  of (29) satisfy the condition 1.sz ≤

Furthermore, those roots with 1sz = have multiplicity not 
exceeding two. 
  
Applying definition 4 to our one-step block method with

8r = and 2,  A is a 4 4 identity matrix yieldsµ = × ,   

                  ( ) ( )26 1 0z z zρ = − =  
Clearly, the conditions of (29) are satisfied hence, the method 
is zero stable. 
The consistency of the method follows from the fact that the 
order of the block method is greater than one. 
Following [9], our method is also convergent. 
 
4.3 Region of Absolute Stability of the Block Method 
 

The stability polynomial of our one-step block 
method is obtained applying the scalar test problem                
  2y yλ′′ = −                (30)                                                                    

To the block formula (15), in the spirit of (2), such that 

mm yhWY )(=                       (31)                                                                          
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Where 22hh λ=  and 

           
1( ) ( ) ( )W h a hb c hd−= − +  

is called the amplification matrix. 

Definition 5: The interval ),0( 0h of the real line is said to 
be the interval of absolute stability if in this interval𝜌(ℎ�) < 1, 
where 𝜌(ℎ�) is the spectral radius of )(hW [see [5]]. 

Our block method is found to satisfy the condition𝜌(ℎ�) < 1, 
if ( 806.86,0).h ∈ −  

5. NUMERICAL EXAMPLE 

In this section, the efficiency and accuracy of our 
one-step method implemented as a block method is tested on 
some numerical examples. The absolute errors computed are 
compared with those obtained in [18], which used a 
numerical scheme implemented in the predictor corrector 
mode. Each of the following examples is tested using step 
size h=1/320. The tables of results of the problems given in 
Tables 1,2 and 3 respectively, are obtained from a 
FORTRAN 95 program using a fixed step size; h= 1/320 for 
computation. 
 
Problem 1: 

2 1( ) 0; (0) 1, (0)
2

y x y y y′′ ′ ′− = = =  

 
Theoretical solution: 
 

1 21 ln
2 2

xy
x

+ = +  −   
 
Source: [3]

  
Problem 2: 

( ) ( )33 ; 1 2, 1 10yxy x y y y
x

′′ ′ ′− + − = =  

 
Theoretical Solution:  
 

( )3 23 2 1 lny x x x x x= − + +  
 
Source: [2] 
 
Problem 3: 
 

( ) ( )2

6 4 0; 1 1 1y y y y y
x x

   ′′ ′ ′+ + = = =   
   

 

 
 
 

Theoretical Solution 
 

4

5 3
3 3x x

−  

 
Source [5] 
 
6. DISCUSSION 
 

By extending an earlier result, we have improved on 
the performance of our one-step method developed by the 
interpolation and collocation technique with the incorporation 
of o_step points for the approximation of the solutions of 
initial value problems of general second order ordinary 
differential equations of the form (1). Implementing the new 
scheme by the block method allows the generation of 
solutions at different grid points simultaneously, in a single 
application of the method. 

Three test problems solved by [2], [3] using a 
numerical scheme developed in the predictor corrector mode; 
and also by [5] and [1] implemented in the block mode, have 
been solved here using the new method. The absolute errors 
generated by the new method, as reported in Tables 1, 2 and 
3, show clearly that by increasing the number of the non-step 
points from one to three, the accuracy of our new method 
improved. Furthermore, this new order five method yielded a 
very small truncation error term and enjoys a wide interval of 
absolute stability. 

We conclude that the new one-step method is 
accurate, reliable and efficient. Thus, we recommend the new 
method for numerical approximation of the solutions of, 
mathematical models describing phenomena in science and 
engineering in the form of, higher order initial value problems 
of ordinary differential equations. 
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