
 

 

 

    

    Abstract— We investigate the existence of solutions of 

quantum stochastic differential inclusion (QSDI) with some 

uniqueness properties as a variant of the results in the 

literature. We impose some weaker conditions on the 

coefficients and show that under these conditions, a unique 

solution can be obtained provided the functions    
        

   are measurable such that their integral is finite.  
 

Index Terms— Uniqueness of solution; Weak Lipschitz 

conditions; stochastic processes. Successive approximations 

 

 
I INTRODUCTION 

In this paper, we establish existence and uniqueness of 

solution of the following quantum stochastic differential 

inclusion (QSDI):  

                    

 

 

                 

             
                               (1)                                    

QSDI (1) is understood in the framework of the Hudson and 

Parthasarathy [9] formulation of Boson quantum stochastic 

calculus. The maps        appearing in (1) lie in some 

suitable function spaces defined in [7]. The integrators 

     
           are the gauge, creation and annihilation 

processes associated with the basic field operators of 

quantum field theory defined in [7]. However, in [7] it has 

been shown that inclusion (1) is equivalent to this first order 

nonclassical ordinary differential inclusion     

                  
 

  
                                                                                           

                                                                (2)  

   The map                   appearing in (2) is defined 
by  

                                         
                            

 In [5, 6], some of the results in [2, 7] were generalized. 

Results on multifunction associated with a set of solutions of 

non-Lipschitz quantum stochastic differential inclusion 

(QSDI), which still admits a continuous selection from some 

subsets of complex numbers were established.  

In [3], results on non-uniqueness of solutions of inclusion 

(2) were established under some strong conditions. 

Motivated by the results in [5, 6], we establish existence and 

uniqueness of solution of inclusion (2) under weaker 

conditions defined in [5]. Here, the map               is 

not necessarily Lipschitz in the sense of [3]. Hence the 

results here are weaker than the results in [3]. Inclusion (1) 
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has applications in quantum stochastic control theory and 

the theory of quantum stochastic differential equations with 

discontinuous coefficients. See [7] and the references 

therein.   

The rest of this paper is organized as follows; Section 3 of 

this paper will be devoted to the main results of the work 

while in section 2 some definitions, preliminary results and 

notations will be presented.  

  

II PRELIMINARY RESULTS 

Some of the notations and definitions used here will come 

from the references [3, 5-7].   is a topological space, while  

clos( ), comp( ) denote the collection of all nonempty 

closed, compact subsets of   respectively. The space    (a 

locally convex space) is generated by the family of 

seminorms                              . 

       is the completion of  .  Here    consists of linear 

operators defined in [3]. In what follows,   is a pre-Hilbert 

space,   its completion,   a fixed Hilbert space and   
      

is the space of square integrable  - valued maps on   . For 

the definitions and notations of the Hausdorff topology on 

   and more see [3] and the references therein. 

Definition 1 

                   is Lipschitzian if              

                           
                     

                                            (3)  

where                              .   

Remark 2: (i) If           
 
 and         then we 

obtain the results in [3] 

 In this case, we obtain a class of multivalued maps which 

are not necessarily Lipschitzian in the sense of definition (3) 

(b) in [3]. 

Definition 3 By a solution of (1) or equivalently (2) we 

mean a stochastic process        lying in           
    
      satisfying (1). 

The following result established in [3] is modified here. 

However we refer the reader to [3] for a detailed proof as we 

will only highlight the major changes due to the conditions 

in this setting. 

Theorem 4 Let           . For any              
defined by      

                                                                            

is Lipschitzian with         
Proof: We adopt the method of the proof of Theorem 2.2 in 

[3] as follows: 

Let the function    
      , then for               we 

have                          

                   

                                                                                                                         

                           

         
                  

    
                       

Where     
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Let                 . So that (2.2) in [3] becomes  

                         
               

      (4)                                                  

                                                   

Similarly, (2.5) in [3] becomes  

                        
               

        (5)                                                          

For the map                  . Hence we conclude that 

the given map is also Lipschitzian.  

 

III MAJOR RESULTS 

To establish the major result in this section, we use the 

methods used in [3, 7]. In the sequel, except otherwise 

stated,                         is arbitrary. In line 

with [5, 6], we make the following assumptions 

Let                        and for almost all    
     , there exists            

          such that 

                      
 

  
                                 

Fix      and define the set       by, 

                                             

Since the coefficients E, F, G, H in (1) are Lipschitzian with  

                     (5) above holds for a. e.  

                   
I.                           

II.                     where  

                       

III.  Given the sequence 

                           we have  

                 W                         
         

IV.  Define                           
           

V.  Define  

                       
 

 

 

              

VI. Define    [0, 1] by  

                                                        

We adopt the definitions of following; 
                     

 from the reference [3].                                                  

Proposition 5.  Let       
            be a sequence 

satisfying; 

  (i)                    for a.e.     . 

  (ii)  There exists        
   and a constant      , such that 

   (a)                      
 

 
                    

   (b) 

 
 

  
           

 

  
              

                                       
      

    
    

      
 , for a. e.       

Then, 

(c)                             
    

 

 

   
   

      
     

where          
Proof: The proof is an adaptation of the arguments 

employed in [3], Proposition 3.1. 

Assume (i) and (ii) above hold. Then  

                                  
 

 

              by (ii) in (a) 

   
 

  
           

 

  
              

 

 

  

   
 

  
           

 

  
               

 

 

 

       
       

    
    

      
   

 

 

 

           
    

 

 

      
   

      
             

The next Theorem is a major result.  

Theorem 6. Suppose conditions I- VI hold, 

                                  is continuous. 

Then   a unique solution such that  

                                    ,                    (6)                                                                                   

 
 

  
          

 

  
            

                                           
                 (7) 

 

Proof. From the references [3, 7, 8], we construct a   - 

Cauchy sequence       of successively approximates     . 
We make the following assumptions: 

  
 

  
           

   
 is Cauchy in   for arbitrary 

                   is adapted.  

By Theorem 1.14.2 in [1], there exists a measurable 

selection                            so that (3.3) in [3] 

holds and since            is locally absolutely integrable, 

then        
        

 Let       be defined as  

                                      
 

 
                    (8)             

 If            then            It implies that (3.4) and 

(3.5) in [3] hold in this case. 

Again   a measurable selection 

                                         
which yields  

            
 

  
           

   
 

  
                            

                                                            

                             
                        

                        
                 

     
 

 
           (9) 

                                   

 For some         
 
  
 
     . Similarly, for  

                
       resulting in;    

                               ,                             (10)    

  Define       as       in (8) above. Then             
since       and hence       is adapted. 

Now if we consider      we get,  

                                 
 

 

 
  

 

                                                                    
 

 
 

                   
 

 
                               

                   
                     

 

 
         (11)         

By (3.4) in [3], we obtain  

                                    
           

 

 

                                           
   

 

 
                           (12) 

   Continuing in this manner and replacing 1 with 2 in       
for           we get 
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  (13) 

    by (12). 

 In a similar way we can show that since 

                 
      there exist              defined by  

                        
 

 

 

and                                                  

                                            
 

 
      (14) 

         satisfying  

                                 
 

 

 
  

 

        
           

           

 

 

 

 

               
      

  

 

 

        
               

     
 

 

 

 
                                                        

         
          

     
 

 

 

 
           
  

 
       (15)                                          

and  

                                  
 

 
 
  

 

                                    

         
          

     
 

 

 

 
           

      
  

 
           

            
          

     
 

 

 

 
           

      
  

 
           

                      
   

 
                                  (16) 

                        Then  

 

 
 

  
           

 

  
            

        
          

    
 

 
           

     
 

 
                 

        
          

    
 

 
      

           
  

 

 

 
             

                                                                        (17)                   

and by (16) and (17) we get  
               

       
          

 

 

 

 

           

  

 

           

       
          

 

 

 

 

      

  

 

             
       

   

 

  

    
       

    
  

 
   

 

 

 

 Also for         , 

 
 

  
           

 

  
            

                 
                           

 

 

 

 
                                                                                

      
                              

  

 

 

 

 

 
                                                                     

      
                    

  

 
                

  

 
   

                       
          

   

 
      

   

 
   

                              
         

   

 
                         (18)        

Next, we claim that the sequence            exists. To prove 

this claim, we let            and by Theorem (1.14.2) in 

[1],   a computable selection 

                           which yields  

            
 

  
           

   
 

  
                              

Since                 ,          
      defined by (10) 

a.e. on J and define         as in (8). Then for arbitrary 

        , we get, 

 
 

  
             

 

  
           

                         

                                         

      
                        

       
              

    
      

   

      

 

 

      

      
       

    
      

      
   

This establishes (ii)(b) of Prop. 5. Now, for      we get 
                                   

                 

                                                   

               
    

      
 

  
   

 

 

 

   

   

 

                               
            

 

 
      (19) 

 So that (6) of theorem 6 and (i) of proposition 5 follows. 

(ii)(b) of proposition 5 yields  

 
 

  
             

 

  
            

  
 

  
           

 

  
            

           
    

      
 

  

   

   

  

             
           

Taking the limit as       (7) of Theorem 6 follows. Hence 

        is a Cauchy sequence in    and converges to     . 
Since                , it implies that       
         . 
 

Remark 7. The result of Corollary 3.4 and Theorem 3.4 in 

[3] fails in this case since the Lipschitz function is 

independent of   and         will not be applicable. 

Hence we establish our result on uniqueness. 

 

Uniqueness of solution 

To establish this result, we assume that  

                       is another solution with 

       .  By using equation (8) and hypothesis (iii) in 

Theorem 6 (see also equation (2.1) in [4]), we obtain  

                
  
                

 

 
 
  

 

                                                       
 

 
  

                                                            
 

 
                                                                                        

     
 

 
                                                                                                                   

                      
               

  

 

 
    

Since the integral     
    

 

 
   exists on [0, T], it is also 

essentially bounded on the given interval. Hence, there 

exists a constant     such that            
           

       Thus  
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By the Gronwall's inequality, we conclude that  

                    Hence the solution is unique. 

 

ACKNOWLEDGEMENT 

The authors will like to use this medium to appreciation 

the management of Covenant University for the financial 

support given towards this research. The constructive 

suggestions of the reviewers are also greatly appreciated. 

  

 

CONFLICT OF INTEREST 

The authors declare that no conflict of interest with respect 

to the publication of this paper. 

 

 

REFERENCES 

[1] J. P. Aubin and A. Cellina, “Differential Inclusions,” 

Springer-Verlag, Berlin, 1984. 

[2]  E. O. Ayoola, “Continuous Selections of Solutions Sets 

of Lipschitzian quantum stochastic differential 

inclusions,” Int. Journal of Theoretical Physics. Vol. 43, 

Issue 10, pp. 2041-2058, 2004.  

[3] E. O. Ayoola, “quantum stochastic differential inclusions 

satisfying a general Lipschitz condition,” Dynamic 

System and Appls. Vol. 17, pp. 487-502, 2008 

[4]  E. O. Ayoola, “On Convergence of One -Step Schemes 

for Weak Solutions of Quantum Stochastic Differential 

Equations,” Acta Applicandae Mathematicae, Vol. 67, 

pp. 19-58, 2001. 

[5] S. A. Bishop and T. A. Anake, “Extension of continuous 
selection sets to non-lipschitzian quantum stochastic 

differential inclusion,” Stochastic Analysis and 

Applications, Vol. 31, Issue 6, pp. 1114-1124, 2013. 

[6] S. A. Bishop and E. O. Ayoola, “On Topological 
Properties of Solution Sets of Non Lipschitzian Quantum 

Stochastic Differential Inclusions,” Journal of Analysis 

and Mathematical Physics, Springer Basel (2015) (DOI) 

10.1007/s13324-015-0109-1  

[7] G. O. S. Ekhaguere, “Lipschitzian quantum stochastic 

differential inclusions,” Int. J. of Theoretical Physics, 

Vol. 31 Issue 11, pp. 2003-2025, 1992. 

[8] G. O. S. Ekhaguere, “Quantum Stochastic Differential 

Inclutions of Hypermaximal monotone type,” Int. J. 

Theoret. Phys. Vol 34, Issue 3, pp. 323-353. 1995. 

[9] R. L. Hudson and K. R. Parthasarathy, “Quantum Ito's 

formulae and stochastic evolutions,” Comm. math. phys. 

Vol. 93, pp. 301-324, 1984. 

 

 

 

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I 
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017




