
 

 

Abstract— In this work, the differential calculus was used to 

obtain some classes of ordinary differential equations (ODE) 

for the probability density function, quantile function, survival 

function, inverse survival function, hazard function and 

reversed hazard function of the exponentiated Frĕchet 

distribution. The stated necessary conditions required for the 

existence of the ODEs are consistent with the various 

parameters that defined the distribution. Solutions of these 

ODEs by using numerous available methods are a new ways of 

understanding the nature of the probability functions that 

characterize the distribution. The method can be extended to 

other probability distributions and can serve an alternative to 

approximation.      

      

Index Terms— Exponentiated, Fréchet distribution, hazard 

function, calculus, differentiation. 

I. INTRODUCTION 

ADARAJAH and Kotz [1] proposed the distribution as 

an improved model over the parent Fréchet 

distribution. The distribution is a sub model of 

exponentiated Gumbel type-2 Distribution proposed by [2]. 

The distribution has been applied as a regression model in 

modeling positive responses [3].                                                                                                                                      

Other exponentiated class of distributions include: 

exponentiated Weibull [4-6], exponentiated exponential [7], 

exponentiated generalized inverted exponential distribution 

[8], exponentiated generalized inverse Gaussian distribution 

[9], exponentiated inverted Weibull distribution [10-11], 

gamma-exponentiated exponential distribution [12], 

exponentiated gamma distribution [13], exponentiated 

Gumbel distribution [14], exponentiated uniform 

distribution [15], beta exponentiated Weibull distribution 

[16], exponentiated log-logistic distribution [17], 

exponentiated Kumaraswamy distribution [18], 

exponentiated modified Weibull extension distribution [19] 

and exponentiated Pareto distribution [20].       

   The aim of this research is to develop ordinary differential 

equations (ODE) for the probability density function (PDF), 
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Quantile function (QF), survival function (SF), inverse 

survival function (ISF), hazard function (HF) and reversed 

hazard function (RHF) of exponentiated Frĕchet distribution 

by the use of differential calculus. Calculus is a very key 

tool in the determination of mode of a given probability 

distribution and in estimation of parameters of probability 

distributions, amongst other uses. The research is an 

extension of the ODE to other probability functions other 

than the PDF. Similar works done where the PDF of 

probability distributions was expressed as ODE whose 

solution is the PDF are available. They include:  Laplace 

distribution [21], beta distribution [22], raised cosine 

distribution [23], Lomax distribution [24], beta prime 

distribution or inverted beta distribution [25]. 

                  

II. PROBABILITY DENSITY FUNCTION 

   The probability density function of the exponentiated 

Frȇchet distribution is given as;         

 
( 1) 1( ) e (1 e )x xf x x

 
 

  
   

                (1) 

To obtain the first order ordinary differential equation for 

the probability density function of the exponentiated Frȇchet 

distribution, differentiate equation (1), to obtain;    
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The condition necessary for the existence of equation is 
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Another process of differentiation is carried out on equation 

(3) to obtain;              
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The condition necessary for the existence of equation is 

, , , 0.x                                                                               

The following equations obtained from equation (3) are 

needed to simplify equation (4); 
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Substitute equations (5), (8), (10) and (12) into equation (4);
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The condition necessary for the existence of equation is 
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A case was considered, that is when 1     , 

equation (13) becomes;   
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Simplify equation (16) to obtain                 
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III. QUANTILE FUNCTION 

 The Quantile function of the exponentiated Frȇchet 

distribution is given as;  
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To obtain the first order ordinary differential equation for 

the Quantile function of the exponentiated Frȇchet 

distribution, differentiate equation (18), to obtain;   
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The condition necessary for the existence of equation is 

, , 0,0 1.p                                                        

Equation (19) can be simplified as;                     
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Substitute equation (18) into equation (20) to obtain; 
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Equation (18) is simplified to obtain;         
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Substitute equation (23) into equation (21);       
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 1. 

Table 1: Classes of differential equations obtained for the 

quantile function of exponentiated Frȇchet distribution for 

different parameters.                  

         Ordinary Differential Equation 

1 1 1 2( ) ( ) 0pQ p Q p     

1 1 2 22 ( ) ( ) 0pQ p Q p    

1 2 1 32 ( ) ( ) 0pQ p Q p    

1 2 2 38 ( ) ( ) 0pQ p Q p    
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IV. SURVIVAL FUNCTION 

 The survival function of the exponentiated Frȇchet 

distribution is given as;      

 ( ) [1 e ]tS t
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To obtain the first order ordinary differential equation for 

the survival function of the exponentiated Frȇchet 

distribution, differentiate equation (25), to obtain;    
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The condition necessary for the existence of equation is 

, , , 0.t                                                                                 

Substitute equation (26) into (25);                         
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Equation (25) can be simplified as;         
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Substitute equations (28) and (29) into (27);                     
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 2.         

  

 

Table 2: Classes of differential equations obtained for the 

survival function of exponentiated Frȇchet distribution for 

different parameters.                 

         Ordinary differential equation 

1 1 1 2 ( ) ( ) 1 0t S t S t      

1 1 2 2 ( ) 2 ( ) 2 0t S t S t     

1 2 1 3 ( ) 2 ( ) 2 0t S t S t     

1 2 2 3 ( ) 8 ( ) 8 0t S t S t     

        

V. INVERSE SURVIVAL FUNCTION 

The inverse survival function of the exponentiated Frȇchet 

distribution is given as;       
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To obtain the first order ordinary differential equation for 

the inverse survival function of the exponentiated Frȇchet 

distribution, differentiate equation (32), to obtain;    
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The condition necessary for the existence of equation is 

, , 0,0 1.p                                                        

Equation (33) can be simplified as;                     
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Substitute equation (32) into equation (34) to obtain;   
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(35) Equation (32) is simplified to obtain;         
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Substitute equation (37) into equation (35);       
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 3.   

 

 

Table 3: Classes of differential equations obtained for the 

inverse survival function of exponentiated Frȇchet 

distribution for different parameters.          

  

         Ordinary Differential Equation 

1 1 1 2(1 ) ( ) ( ) 0p Q p Q p     

1 1 2 22(1 ) ( ) ( ) 0p Q p Q p    

1 2 1 32(1 ) ( ) ( ) 0p Q p Q p    

1 2 2 38(1 ) ( ) ( ) 0p Q p Q p    

    

VI.  HAZARD FUNCTION 

 The hazard function of the exponentiated Frȇchet 

distribution is given as;   

 

( 1) e
( )

[1 e ]

t

t

t
h t







 




 

 
   

 
 
 





                         (40) 

To obtain the first order ordinary differential equation for 

the hazard function of the exponentiated Frȇchet 

distribution, differentiate equation (40), to obtain;
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The condition necessary for the existence of equation is 
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 4. 
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Table 4: Classes of differential equations obtained for the 

hazard function of exponentiated Frȇchet distribution for 

different parameters.                 

         Ordinary Differential Equation 

1 1 1 2 2 2( ) (2 1) ( ) ( ) 0t h t t h t t h t       

1 1 2 2 2 2( ) (2 2) ( ) ( ) 0t h t t h t t h t      

1 2 1 3 2 3 2( ) (3 2) ( ) ( ) 0t h t t h t t h t      

1 2 2 3 2 3 2( ) (3 8) ( ) ( ) 0t h t t h t t h t      

2 1 1 2 2 22 ( ) (4 2) ( ) ( ) 0t h t t h t t h t      

2 1 2 2 2 22 ( ) (4 4) ( ) ( ) 0t h t t h t t h t      

2 2 1 3 2 3 22 ( ) (6 4) ( ) ( ) 0t h t t h t t h t      

2 2 2 3 2 3 22 ( ) (6 16) ( ) ( ) 0t h t t h t t h t      

 

VII. REVERSED HAZARD FUNCTION 

 The reversed hazard function of the exponentiated Frȇchet 

distribution is given as;       

 
( 1)( )j t t                                         (44) 

To obtain the first order ordinary differential equation for 

the reversed hazard function of the exponentiated Frȇchet 

distribution, differentiate equation (44), to obtain;    
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The condition necessary for the existence of equation is 

, , , 0.t                                                                           

The first order ordinary differential equation for the 

reversed hazard function of the exponentiated Frȇchet 

distribution is given by;            

 ( ) ( 1) ( ) 0tj t j t                                       (46)

 (1)j                                               (47)

     

The ODEs of all the probability functions considered can be 

obtained for the particular values of the distribution. Several 

analytic, semi-analytic and numerical methods can be 

applied to obtain the solutions of the respective differential 

equations [26-40]. Also comparison with two or more 

solution methods is useful in understanding the link between 

ODEs and the probability distributions.         

 

VIII. CONCLUDING REMARKS 

 In this work, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 

exponentiated Frȇchet  distributions. Interestingly, the case 

of RHF yielded simple ODE compared with the other 

probability and reliability functions. In all, the parameters 

that define the distribution determine the nature of the 

respective ODEs and the range determines the existence of 

the ODEs.  

                

 ACKNOWLEDGMENT 

The authors are unanimous in appreciation of financial 

sponsorship from Covenant University. The constructive 

suggestions of the reviewers are greatly appreciated.  

 

REFERENCES 

[1] S. Nadarajah and S. Kotz, “The exponentiated type 

distributions”, Acta Applic. Math., vol. 92, no. 2, pp. 97-111, 

2006.       

[2] I.E. Okorie, A.C. Akpanta and J. Ohakwe, “The 

Exponentiated Gumbel type-2 distribution: properties and 

application. Int. J. Math. Math. Sci., Art. nọ. 5898356, 2016.  

     

[3] F.F. Gündüz and A.I. Genç, “The exponentiated Fréchet 

regression: an alternative model for actuarial modelling 

purposes”, J. Stat. Comput. Simul., vol. 86, no. 17, pp. 3456-

3481, 2016.  

[4] M. Pal, M.M. Ali and J. Woo, “Exponentiated Weibull 

distribution”, Statistica, vol. 66, no. 2, pp. 139-147, 2006.  

[5] G.S. Mudholkar and D.K. Srivastava, “Exponentiated Weibull 

family for analyzing bathtub failure-rate data”, IEEE Trans. 

Relia., vol. 42, no. 2, pp. 299-302, 1993.   

[6] M.M. Nassar and F.H. Eissa, “On the exponentiated Weibull 

distribution”, Comm. Stat. Theo. Meth., vol. 32, no. 7, pp. 

1317-1336, 2003.     

[7] R.D. Gupta and D. Kundu, “Exponentiated exponential 

family: an alternative to gamma and Weibull distributions”, 

Biometrical J., vol. 43, no. 1, pp. 117-130, 2011.   

[8] P.E. Oguntunde, A.O. Adejumo and  O.S. Balogun, 

“Statistical properties of the exponentiated generalized 

inverted exponential distribution”, Appl. Math., vol. 4, no. 2, 

pp. 47-55, 2014.      

[9] A.J. Lemonte and G.M. Cordeiro, “The exponentiated 

generalized inverse Gaussian distribution”, Stat. Prob. Lett., 

vol. 81, no. 4, pp. 506-517, 2011.                                                            

[10] A. Flaih, H. Elsalloukh, E. Mendi and M. Milanova, “The 

exponentiated inverted Weibull distribution”, Appl. Math. Inf. 

Sci, vol. 6, no. 2, pp. 167-171, 2012.                                          

[11] I. Elbatal and H.Z. Muhammed, “Exponentiated generalized 

inverse Weibull distribution”, Appl. Math. Sci., vol. 8, no. 81, 

pp. 3997-4012, 2014.  

[12] M.M. Ristić and N. Balakrishnan, “The gamma-exponentiated 

exponential distribution”,  J. Stat. Comput. Simul., vol. 82, no. 

8, pp. 1191-1206, 2012.     

[13] S. Nadarajah and A.K. Gupta, “The exponentiated gamma 

distribution with application to drought data”, Calcutta Stat. 

Assoc. Bull., vol. 59, no. 1-2, pp. 29-54, 2007.    

[14] S. Nadarajah, “The exponentiated Gumbel distribution with 

climate application”, Environmetrics, vol. 17, no. 1, pp. 13-

23, 2006.     

[15] C.S. Lee and H.Y. Won, “Inference on reliability in an 

exponentiated uniform distribution”,  J. Korean Data Info. 

Sci. Soc., vol. 17, no. 2, pp. 507-513, 2006.     

[16] G.M. Cordeiro, A.E. Gomes, C.Q. da-Silva and E.M. Ortega, 

“The beta exponentiated Weibull distribution”,  J. Stat. 

Comput. Simul., vol. 83, no. 1, pp. 114-138, 2013.     

[17] K. Rosaiah, R.R.L. Kantam and S. Kumar, “Reliability test 

plans for exponentiated log-logistic distribution”, Econ. Qual. 

Cont/, vol. 21, no. 2, pp. 279-289, 2006.                                                     

[18] A.J. Lemonte, W. Barreto-Souza and G.M. Cordeiro, “The 

exponentiated Kumaraswamy distribution and its log-

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol II 
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14048-4-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017



 

transform”, Braz. J. Prob. Stat., vol. 27, no. 1, pp. 31-53, 

2013.                 

[19] A.M. Sarhan and J. Apaloo, “Exponentiated modified Weibull 

extension distribution”, Relia. Engine. Syst. Safety, vol. 112, 

pp. 137-144, 2013.                                                                  

[20] A.I. Shawky and H.H. Abu-Zinadah, “Exponentiated Pareto 

distribution: different method of estimations”, Int. J. 

Contemp. Math. Sci., vol. 4, no. 14, pp

[21] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous 

univariate distributions, Wiley New York. ISBN: 0-471-

58495-9, 1994.     

[22] W.P. Elderton,  Frequency curves and correlation, Charles 

and Edwin Layton. London, 1906. 

[23] H. Rinne, Location scale distributions, linear estimation and 

probability plotting using MATLAB, 2010.   

[24]  N. Balakrishnan and C.D. Lai, Continuous bivariate 

distributions, 2nd edition, Springer New York, London, 2009.    

  

[25]  N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous 

Univariate Distributions, Volume 2. 2nd edition, Wiley, 1995.  

[26]  S.O. Edeki, H.I. Okagbue , A.A. Opanuga and S.A. Adeosun, 

“A semi - analytical method for solutions of a certain class of 

second order ordinary differential equations”, Applied 

Mathematics, vol. 5, no. 13, pp. 2034 – 2041, 2014.     

[27] S.O. Edeki, A.A Opanuga and H.I Okagbue, “On iterative 

techniques for numerical solutions of linear and nonlinear 

differential equations”, J. Math. Computational Sci., vol. 4, 

no. 4, pp. 716-727, 2014.    

[28] A.A. Opanuga, S.O. Edeki, H.I. Okagbue, G.O. Akinlabi, 

A.S. Osheku and B. Ajayi, “On numerical solutions of 

systems of ordinary differential equations by numerical-

analytical method”, Appl. Math. Sciences, vol. 8, no. 164, pp. 

8199 – 8207, 2014.                 

[29]  S.O. Edeki , A.A. Opanuga, H.I. Okagbue , G.O. Akinlabi, 

S.A. Adeosun and A.S. Osheku, “A Numerical-computational 

technique for solving transformed Cauchy-Euler 

equidimensional equations of homogenous type.  Adv. Studies 

Theo. Physics, vol. 9, no. 2, pp. 85 – 92, 2015.              

[30] S.O. Edeki , E.A. Owoloko , A.S. Osheku , A.A. Opanuga , 

H.I. Okagbue and G.O. Akinlabi, “Numerical solutions of 

nonlinear biochemical model using a hybrid numerical-

analytical technique”, Int. J. Math. Analysis, vol. 9, no. 8, pp. 

403-416, 2015.   

[31] A.A. Opanuga , S.O. Edeki ,  H.I. Okagbue and  G.O. 

Akinlabi, “Numerical solution of two-point boundary value 

problems via differential transform method”, Global J. Pure 

Appl. Math., vol. 11, no. 2, pp. 801-806, 2015. 

[32] A.A. Opanuga, S.O. Edeki, H.I. Okagbue and G. O. Akinlabi, 

“A novel approach for solving quadratic Riccati differential 

equations”, Int. J. Appl. Engine. Res., vol. 10, no. 11, pp. 

29121-29126, 2015.  

[33] A.A Opanuga, O.O. Agboola and H.I. Okagbue, 

“Approximate solution of multipoint boundary value 

problems”, J. Engine. Appl. Sci., vol. 10, no. 4, pp. 85-89, 

2015.                                 

[34] A.A. Opanuga, O.O. Agboola, H.I. Okagbue and J.G. 

Oghonyon, “Solution of differential equations by three semi-

analytical techniques”, Int. J. Appl. Engine. Res., vol. 10, no. 

18, pp. 39168-39174, 2015.            

[35] A.A. Opanuga, H.I. Okagbue, S.O. Edeki and O.O. Agboola, 

“Differential transform technique for higher order boundary 

value problems”, Modern Appl. Sci., vol. 9, no. 13, pp. 224-

230, 2015.   

[36] A.A. Opanuga, S.O. Edeki, H.I. Okagbue, S.A. Adeosun and 

M.E. Adeosun, “Some Methods of Numerical Solutions of 

Singular System of Transistor Circuits”, J. Comp. Theo. 

Nanosci., vol. 12, no. 10, pp. 3285-3289, 2015.   

[37]  A.A. Opanuga, E.A. Owoloko, H.I. Okagbue, “Comparison 

Homotopy Perturbation and Adomian Decomposition 

Techniques for Parabolic Equations,” Lecture Notes in 

Engineering and Computer Science: Proceedings of The 

World Congress on Engineering 2017,  

5-7 July, 2017, London, U.K., pp. 24-27. 

[38]  A.A. Opanuga, E.A. Owoloko, H. I. Okagbue, O.O. Agboola, 

"Finite Difference Method and Laplace Transform for 

Boundary Value Problems," Lecture Notes in Engineering 

and Computer Science: Proceedings of The World Congress 

on Engineering 2017, 5-7 July, 2017, London, U.K., pp. 65-

69. 

[39] A.A. Opanuga, H.I. Okagbue, O.O. Agboola, "Irreversibility 

Analysis of a Radiative MHD Poiseuille Flow through Porous 

Medium with Slip Condition," Lecture Notes in Engineering 

and Computer Science: Proceedings of The World Congress 

on Engineering 2017, 5-7 July, 2017, London, U.K., pp. 167-

171.    

[40] A.A. Opanuga, E.A. Owoloko, O.O. Agboola, H.I. Okagbue, 

"Application of Homotopy Perturbation and Modified 

Adomian Decomposition Methods for Higher Order 

Boundary Value Problems," Lecture Notes in Engineering 

and Computer Science: Proceedings of The World Congress 

on Engineering 2017, 5-7 July, 2017, London, U.K., pp. 130-

134.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol II 
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14048-4-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017




