

### DEPARTMENT OF PETROLEUM ENGINEERING

## COVENANT UNIVERSITY

### OTA, OGUN STATE, NIGERIA

## A NEW MODEL FOR PREDICTING LIQUID LOADING IN MULTIPHASE GAS WELLS

### A MASTER OF ENGINEERING DISSERTATION

BY

BOLUJO, OPEYEMI ENIOLA

14PCN00720

FEBRUARY, 2017.

### A NEW MODEL FOR PREDICTING LIQUID LOADING IN MULTIPHASE GAS WELLS

#### A MASTER OF ENGINEERING DISSERTATION

**Presented to** 

# **College of Engineering**

## **The Department of Petroleum Engineering**

BY

### **BOLUJO, OPEYEMI ENIOLA**

#### 14PCN00720

In Partial Fulfillment of the requirements for the Degree of Master of Engineering

In petroleum Engineering

COVENANT UNIVERSITY, OTA

FEBRUARY, 2017.

### CERTIFICATION

| This is to certify that the contained research project titled A NEW MODEL FOR PREDICTING   |
|--------------------------------------------------------------------------------------------|
| LIQUID LOADING IN MULTIPHASE GAS WELLS was researched, and the results thoroughly          |
| analyzed under the supervision of the project supervisor and approved having satisfied the |
| partial requirement for the award of Master of Engineering Degree in Petroleum Engineering |
| (M. Eng.), Covenant University, Ota.                                                       |

|                        | •••••••••••••••••• |
|------------------------|--------------------|
| BOLUJO, ENIOLA OPEYEMI | Date               |
| Author.                |                    |
|                        |                    |
| PROF AKO CHURCHILL.T.  | Date               |
| Supervisor             |                    |
|                        |                    |
|                        |                    |
| DR. ANAWE PAUL A. L.   | Date               |
| Head of Department     |                    |
|                        |                    |
|                        |                    |
| PROF. ABIOLA KEHINDE   | Date               |
| External Examiner      |                    |

#### DEDICATION

I dedicate this work to God almighty, the most gracious and merciful for his faithfulness and loving kindness. Glory be to your holy name.

#### ACKNOWLEDGEMENT

All the glory and honour be to God, for his mercies endureth forever. For the strength, wisdom and grace that he made available throughout the period of this work. I say thank you Lord.

My profound gratitude goes to my supervisor, Prof Ako Churchill for all the constant support and guidance and all the constructive criticism you provided to see the actualization of this work. I say you are blessed.

Also, am extremely grateful to our postgraduate coordinator, Dr Orodu for his immense contributions, love and care and support all the way. God will reward you richly.

Many thanks to Engr. Fadairo Samson for his support and contribution towards the actualization of this work. God bless you.

I must not forget to appreciate these individuals; Engr Adeyemi, Mr Ameloko, Mr Daramola, Engr Seteyeobot and host of others. Thank you all for being part of my success story.

Mr Ogunkunle Fred I appreciate you for your insightful thoughts and contributions. God bless you.

To my wonderful classmate and friend, Mr Omodara O.J, I salute your courage and doggedness. We shall meet again at the top.

To my parents, Mr. and Mrs. Joseph Akinshola Bolujo, I say big thank you for always being there for me.

My indebtedness goes to my amiable wife, Ifeoluwaseyi and my wonderful children, Israel, Hephzibah and Nathaniella. I say thank you all for the understanding and endurance all the way.

#### ABSTRACT

Liquid column that accumulates in the wellbore leading to the reduction or completely preventing the production of gas well is called liquid loading. This is one phenomenon that is essential because in other to optimize the recovery of hydrocarbon from the gas reservoir and to prevent the occurrence of liquid loading, pressure differential as a function of flow rate across the valves must not be neglected. Several options have been employed in well completions to predict liquid loading and how it can be mitigated but the results have shown varying degrees of discrepancies and hence cannot be easily used because of the challenges involved in predicting the bottomhole pressure in a multiphase flow. In the last decades, different techniques and correlations have been offered by many authors for determination of critical liquid loading rate. This new model considered the pressure drop at the bottomhole and along the functional nodes (valves). The model is an improvement on Fadiro model with the introduction of valve equation to the fundamental momentum equation. It described a systematic approach for estimating liquid loading in a gas well by numerical integration method. None of the previously described models considered pressure drop along the functional node. It is therefore, evidently effective when compared analytically with Turner, Guo and Fadairo models. The result shows that the flow rate during the transient stage is faster than that of Fadairo and it became stable at a certain time during production. It was also observed that the minimum energy required to lift liquid out of the wellbore is higher than that at the initial production stage. The numbers of incorrectly predicted wells as calculated by the new model are far lower than all the previously described models. This model is essential for field operators so as to equip them on how to tackle the risk of liquid loading during natural gas production.

## LIST OF FIGURES

| Figure 1.1 Flow Patterns in Vertical Well                             | 4  |
|-----------------------------------------------------------------------|----|
| Figure1.2 Phase Envelope Behavior                                     | 12 |
| Figure 2.1 Force Balance of a Single Droplet                          | 18 |
| Figure 3.1 Illustration of a Vertical Well                            | 31 |
| Figure 4.1 Calculated Flow Rate Vs Test Flow Rate of Turner           | 44 |
| Figure 4.2 Calculated Flow Rate Vs Test Flow Rate of Guo              | 45 |
| Figure 4.3 Calculated Flow Rate Vs Test Flow of Fadairo 2013          | 46 |
| Figure 4. 4 Calculated Flow Rate Vs Test Flow of the New Model        | 47 |
| Figure 4.5 Critical Flow Rate Comparison with Different Pressures     | 48 |
| Figure 4.6 Transient Curve (Minimum Gas Flow Rate Vs Production Time) | 49 |

### LIST OF TABLES

| Table 4.1 Showing The Number of Incorrectly Predicted Wells | 53  |
|-------------------------------------------------------------|-----|
| Table A.1 Showing the comparison of the Five Models         | .56 |
| Table A. 2 Representing the Flow Rate of each of the Models | 60  |

#### NOMENCLATURE

- A cross sectional area of conduit,  $ft^2$
- Ai cross sectional area of conduit, in<sup>2</sup>
- C<sub>d</sub> drag coefficient.
- <sup>DH</sup> Hydraulic diameter of the conduit, ft
- $E_K$  gas specific kinetic energy, ibf-ft /ft<sup>3</sup>
- Eksl minimum kinetic energy required to keep liquid droplet from falling, ibf-ft/ft<sup>3</sup>
- Ekm minimum kinetic energy required to transport liquid droplet, ibf-ft/ft<sup>3</sup>
- f Moody friction factor, dimensionless.

 $g_c = 32.2 \text{ ft.} \text{s}^2$ 

- L conduit length, ft
- P<sub>wf</sub> wellhead flowing pressure, psia

P pressure,  $lb/ft^3$ 

- Qg insitu gas volumetric flow rate ft<sup>3</sup>/s
- Qoil Oil volumetric flow rate,  $ft^3/s$
- Qs Solid particle volumetric flow rate,  $ft^3/s$
- Qw Water volumetric flow rate, ft<sup>3</sup>/s
- $S_g$  Gas specific gravity, air = 1
- $S_0$  Specific gravity of produced oil, fresh water = 1
- $S_S$  Solid specific gravity, fresh water = 1
- $S_w$  Specific gravity of produced water, fresh water = 1

- Vmx mixture velocity, ft/s
- Wo Oil weight flow rate, lb/s
- Wg Gas weight flow rate, lb/s
- Ws Solid particle weight flow rate, lb/s
- Ww Water weight flow rate, lb/s

# **Table of Content**

| CERTIFIC       | CATIONii                             |
|----------------|--------------------------------------|
| DEDICAT        | IOiii                                |
| ACKNOW         | LEDGEMENTiv                          |
| ABSTRAC        | v                                    |
| LIST OF F      | IGURESvi                             |
| LIST OF 1      | ABLESvii                             |
| NOMENC         | LATUREviii                           |
| Table of C     | ontentsx                             |
| 1.0 INTRO      | DUCTION1                             |
| 1.1 BAC        | KGROUND OF STUDY1                    |
| 1.2 MUI        | TIPHASE FLOW2                        |
| 1.2.1 I        | RESERVIOR GEOMETRY3                  |
| <b>1.3 SOU</b> | RCE OF LIQUID5                       |
| 1.3.1          | Water Coning5                        |
| 1.3.2          | Aquifer Water5                       |
| 1.3.3          | Condensed Water6                     |
| 1.3.4          | Open Hole Completion Zone6           |
| 1.3.5          | Gas Condensate7                      |
| 1.4 NOD        | AL ANALYSIS                          |
| 1.5 STA        | GES INVOLVES IN LIQUID LOADING9      |
| 1.5.1          | Indication of Liquid Loading10       |
| 1.5.2          | How and When Liquid Loading Occurs10 |
| 1.5.3          | Pressure11                           |
| 1.6 PHA        | SE ENVELOPE BEHAVIOUR11              |
| 1.7 CRI        | FICAL VELOCITY12                     |
| 1.8 AIM        | AND OBJECTIVES                       |
| 1.8.1          | Objectives13                         |

| 1.8.2           | Scope of Project14                                   |
|-----------------|------------------------------------------------------|
| 1.8.3           | Project Significance15                               |
| СНАРТЕБ         | R TWO16                                              |
| 2.1 LITER       | RATURE REVIEW16                                      |
| СНАРТЕР         | <b>R THREE28</b>                                     |
| 3.0 MET         | HODOLOGY                                             |
| 3.1 GOVE        | RNING EQUATION OF THE MODEL26                        |
| 3.2 DESIG       | N THEORY:                                            |
| 3.3 MODE        | L DEVELOPMENT                                        |
| 3.4 NEW N       | AODEL                                                |
| СНАРТЕБ         | R FOUR43                                             |
| 4.0 RESUI       | TS AND DISCUSSIONS43                                 |
| 4.1 LIQUI       | D LOADING DETECTION CRITICAL FLOW RATE44             |
| 4.2 CRITI       | CAL FLOW RATE COMPARISONS WITH DIFFERENT PRESSURES48 |
| 4.3 INFLU       | ENCE OF TRANSIENT FLOW PERIOD49                      |
| СНАРТЕБ         | R FIVE                                               |
| 5.0 CONC        | LUSION AND RECOMMENDATION49                          |
| <b>5.1 CONC</b> | LUSION                                               |
| 5.2 RECO        | MMENDATION53                                         |
| REFEREN         | ICES54                                               |
| APPENDE         | X55                                                  |