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ABSTRACT 

In this research work, we built and ensembled different 

EGFR microdeletion mutations’ based Artificial Neural 

Networks(ANNs) for improved diagnosis of Non-Small Cell 

Lung Cancer(NSCLC). We developed two novel algorithms, 

namely; Genomic Nucleotide Encoding & Normalization 

(GNEN) algorithm to encode and normalize the EGFR 

nucleotides and SimMicrodel algorithm to programmatically 

simulate microdeletion mutations. Sample patients’ data with 

microdeletion mutations were extracted from online EGFR 

mutation databases and the two novel algorithms 

(implemented in MATLAB) were applied to these data to 

generate appropriate data sets for training and testing of the 

networks.   

The networks after proper training, were combined using 

minimum error voting ensembling to predict the number of 

nucleotide deletions in NSCLC patients. Using this 

ensembling approach, our simulations achieved predictions 

with minimal error and provides a basis for diagnosing 

NSCLC patients using genomics based ANN.  

Key Words: ANN, EGFR, GNEN, NSCLC, LM, 

SimMicrodel, 

1 INTRODUCTION 

Environmental and genetic factors play vital roles in the 

deveopment of any disease. However, certain human diseases 

are categorised as genetic disease or disorder because they 

are caused by abnormalities in an individual’s genetic 

materials called genome. This class of disease are of four 

different types which are; single-gene, multifactorial, 

chromosomal and mitochondrial. Meanwhile, the normal 

function of a gene is to encode a protein not to cause illness 

but genetic diseases occur when genes are unable to work 

properly. Cancer in humans generally arise from alterations 

in oncogenes, tumor suppressor gene or genes whose 

products participate in genome surveillance[1]. It can be 

considered a multifactorial disease because it results from the 

combined influence of many genetic factors acting in concert 

with environmental insults such as ultraviolet radiation, 

cigarette smoke and viruses.  

Some chemicals that are used or released via industrial 

activities such as production of plastics, asbestos, 

pharmacautical products and food supplements are not only 

mutagens but carcinogenic(cancer producing). For instance, 

chemicals that are released in smokes from cigarette imparts 

a large number of particles on the airways and alveoli of the 

human lung which slowly oxidize amd produce genotoxic 

radicals. A large percentage of lung cancers which is 

characterised by an uncontrollable growth of cells in the 

lungs are attributable to cigaratte smoking. About 85% of 

people who develop lung cancer are either smokers or have 

been smoker. Worlwid in the 21st century, lung cancers 

emerged as the leading cause of cancer deaths  because it  

results in an estimated 1.3 million deaths each year[1,2,3]. 

Pathologists determine the type of lung cancer by looking at 

a biopsy of tumor cells under the microscope. There are two 

major types of lung cancer which are; non-small cell lung 

cancer(NSCLC)  and small cell lung cancer(SCLC). NSCLC 

accounts for about 85% of lung cancers  while the remaining 

15% are SCLC[3,4]. A spectrum of mutations exists within 

the EGFR kinase domain in tumours of patients with 

NSCLC. The most frequently observed mutations are the 
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Exon 19 deletions and the Exon 21 L858R mutation, which 

taken together account for approximately 85% - 90% of all 

EGFR mutations[5,6,7]. Also, experimental studies reported 

in [8] have shown both qualitative and quantitative 

alterations in downstream signalling by mutant EGFR and 

suggested that NSCLC cells  with these mutations may be 

dependent on the altered signals for survival.  

The various mutational patterns in EGFR is a strong basis for 

an electronic based diagnosis of NSCLC using artificial 

neural network (ANN). The use of ANN in biological and 

medical researches has proliferated greatly during the last 

few years. ANN attempts to emulate function of the human 

brain and has played a great role in the fields of cancer 

research for diagnosis, prognosis and management of 

stages[12].   

Hansen et al in the early 1990 [10] shows that ANN ability 

can be significantly improved through ensembling. The most 

accepted definition of artificial neural network ensemble is 

that ANN ensemble is a collection of a finite number of 

ANNs that are trained for the same task [11]. 

Over the last two decades, a lot of research works have been 

conducted for automated cancer diagnosis based on ANN. 

Zhi-Hua Zhou et al in [13] described an approach for 

utilizing the power of ANN ensembles in reliable 

applications such as diabetes, hepatitis and breast cancer. 

Neural Network model for pattern recognition in medical 

diagnosis was described by Frenster,  J.H. in [14]. G. Wilym  

et al in [15] developed  an  efficient neural network model for 

the diagnosis of carcinogenesis. 

A system that employed an artificial neural network to detect 

suspicious regions in a low-resolution image was described 

in [18]. An automatic pathological diagnosis procedure 

named Neural Ensemble based Detection (NED)  was 

implemented with an artificial neural network ensemble  by 

Zhi-Hua Zhou et al in [19]. 

However in this work, nucleotides of the EGFR’s deletion 

mutations were utilized to train and test different ANNs. 

These ANNs are ensembled to achieve an optimal 

informatics platform for the diagnosis of NSCLC. Section 

two of this paper explains the materials and methods we 

utilised in the research, section three discusses our 

experimental results while section four draws conclusions on 

the paper. 

2. MATERIALS AND METHODS 

The Tyrosine kinase(TK) domain is the region of the EGFR 

gene that is proned to mutation in NSCLC patients. The TK 

domain has 7 exons(exons 18-24), out of which exons 18-21 

carry various somatic mutations in NSCLC patients[20]. 

The nucleotide ranges for exons 18 – 21 of the TK domain 

are shown in Table 1 

 

Table 1. Nucleotides ranges in the EGFR TK domain 

 

The benefit of artificial neural networks (ANNs) as decision 

making tools in the field of cancer was described in [16]. 

Chiou et al designed an ANN based system named 

HLND(hybrid lung cancer detection) to improve the 

accuracy of diagnosis and the speed of lung cancerous 

pulmonary radiology[17]. 

 

 

 

 

 

Table 2 details the genomic  profiles of NSCLC patients with 

microdeletion mutations that we extracted from[20]. The data 

in the table corroborate facts from other literatures on 

oncogenomics for the mutation patterns in NSCLC patients. 

From our data and from literatures, the two most common 

EGFR TK domain mutations are the in-frame deletion(2235- 

 

 

 

 

 

Exons Amino acid 

ranges 

Nucleotides 

ranges 

Number of 

bases 

18 

19 

20 

21 

687 – 728 

729 – 761 

762 – 823 

824 – 875 

2059 – 2184 

2185 - 2283 

2284 - 2469 

2470 – 2625 

126 

99 

186 

156 
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2249del or E746-A750del) in exon 19 and the 

L858R(2573T<G) missense mutation in exon 21[20,21]. 

The structural patterns for the various deletion mutations’ 

categories(Patient Category 1 to Patient Category 22) in 

Table 2  are illustrated in Figures 1,2 and 3. The deleted 

nucleotides are represented with (-).  

 

 

 

 

 

Table 2. Microdeletion mutations 

 

 

 

EGFR Gene  2059     GAGCTTGTGGAGCCTCTTACACCCAGTGGAGAAGCTCCCAACCAAGCTCTCTTGAGGATCTTGAAGGAAACTGAATTCAAAAAGATCAAAGTGCTGGGC           2157  

                       2158     TCCGGTGCGTTCGGCACGGTGTATAAG                                                                                                                                                                                                                 2184 

Patient Category 17       GAGCTTGTGGAGCCTCTTACACCCAGTGGAGAAGCTCCCAACCAAGCTCTCTTGAGGATCTTGAAGGAAACTGAATTCAAAAAGATCAAAGTGCTG - - C 

 TCCGGTGCGTTCGGCACGGTGTATAAG 

Fig 1:  Exon 18 microdeletion mutation pattern(Patient Category 17) 

 

 

 
EGFR Gene   2185        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGAGAAGCAACATCTCCGAAAGCCAACAAGGAAATCCTCGAT     2283 

 

Patient Category 1        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAA - - - - - - - - - - - - - - AACATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 2         GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAG- - - - - - - - - - - - - - -ACATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 3        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGAGAAGCAACA- - - - - - - - - - - - - - - - - - - - - - - -CTCGAT 
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c.2235-2249del 

c.2236-2250del 

c.2254-2277del 

c.2240-2257del 

c.2240-2254del 

c.2239-2256del 

c.2237-2251del 

c.2238-2252del 

c.2238-2255del 

c.2237-2254del 

c.2239-2247del 

c.2239-2253del 

c.2245-2253del 

c.2253-2276del 

c.2309-2310del 

c.2236-2253del 

c.2155-2156del 

c.2238-2247del 

c.2254-2255del 

c.2235-2236del 

c.2240-2251del 

c.2229-2236del 

Total Patients 
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60 

1 

33 

6 

7 

7 

2 

2 

3 

2 

1 

1 

2 

2 

1 

1 

1 

1 

2 

3 

1 
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Pateint Category 4        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAAT- - - - - - - - - - - - - - - - - -CGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 5        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAAT- - - - - - - - - - - - - - - CTCCGAAAGCCAACAAGGAAATCCTCGAT 

Patient Category 6        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAA- - - - - - - - - - - - - - - - - -CCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 7        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGG - - - - - - - - - - - - - - - CATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 8        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGA - - - - - - - - - - - - - - - ATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 9        GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGA - - - - - - - - - - - - - - - - - -TCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 10      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGG - - - - - - - - - - -  - - - - - - - CTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 11      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAA - - - - - - - - -  GCAACATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 12      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAA - - - - - - - - - - - - - - - TCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 13      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGA - - - - - - - - -  TCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 14      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGAGAAGCAAC - - - - - - - - - - - - - - - - - - - - - - - - -CTCGAT 

 

Patient Category 16      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAG - - - - - - - - - - - - - - - - - - TCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 18      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGA  - - - - - - - - - -  GCAACATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 19      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGAGAAGCAACA  - -  TCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 20      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAA  - -  AATTAAGAGAAGCAACATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 21      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAAT  - - - - - - - - - - - - CATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

 

Patient Category 22      GGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGC  - - - - - - - - AATTAAGAGAAGCAACATCTCCGAAAGCCAACAAGGAAATCCTCGAT 

Fig 2:  Exon 19 microdeletion mutation patterns(Patient Categories 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,18,19,20,21,22)  

 

 
EGFR Gene   2284        GAAGCCTACGTGATGGCCAGCGTGGACAACCCCCACGTGTGCCGCCTGCTGGGCATCTGCCTCACCTCCACCGTGCAGCTCATCACGCAGCTCATGCCCTT   2384 

        

                        2385        CGGCTGCCTCCTGGACTATGTCCGGGAACACAAAGACAATATTGGCTCCCAGTACCTGCTCAACTGGTGTGTGCAGATCGCAAAG                                              2469 

 

 

Patient Category 15      GAAGCCTACGTGATGGCCAGCGTGG - - AACCCCCACGTGTGCCGCCTGCTGGGCATCTGCCTCACCTCCACCGTGCAGCTCATCACGCAGCTCATGCCCTT 

 

                                        CGGCTGCCTCCTGGACTATGTCCGGGAACACAAAGACAATATTGGCTCCCAGTACCTGCTCAACTGGTGTGTGCAGATCGCAAAG                                                                                                                                           

 
Fig 3:  Exon 20 microdeletion mutation pattern(Patient Category 15) 

 

 

We developed a novel algorithm for simulating each of the 

microdeletion mutations’ category programatically and 

named it SimMicrodel. The algorithm was programmed in 

MATLAB and perfectly simulates mutations for the various 

microdeletion mutated patient categories. The primary 

purpose of this algorithm is to provide a basis for computer 

based emulation of any type of micro deletion 

mutations(once the exon and the deletion range are known) 

that may be introduced into the diagnostics system randomly 

and dynamically. 

 

2.1  The Genomics Nucleotides 

Encoding and Normalization(GNEN) 

Algorithm  
To comply with the mathematical structure of each ANN 

layer, input and output data is normally structured as a string 

or vector of numbers. One of the challenges in using ANNs is 

mapping how the real-world input/output(e.g. an image, a 

physical characteristics, a list of gene names, a prognosis) 

can be mapped to a numeric vector. This is what 

normalisation caters for. A novel Genomic Nucleotides 

Encoding and Normalization(GNEN) algorithm was 



International Journal of Computer Applications (0975 – 8887) 

Volume 20– No.7, April 2011 

43 

developed by us and programmed in MATLAB to encode the 

TK domain exons for normal and mutated genes. GNEN 

encodes each nucleotide code with their ASCII equivalent 

and then subsequently normalizes the values between -1 and 

1. However, the deletionn mutation represented with(-) in the 

structural patterns are encoded as 0 (see Table 3). 

 

Table 3.  GNEN output  for the four EGFR 

nucleotides and microdeletion mutations. 

 

 

2.2 The Artificial Neural Network(ANN) 

Architecture for our Genomics Based 

ANNs 
Figure 4 is the architectural network of our genomics based 

ANN. In figure 4, p is the input vector of R x 1 dimension 

where R is the number of rows.For batch processing, p is a 

matrix. W is the weigth matrix of dimension S x R where S is 

the number of neurons in the layer. b  is the bias vector 

which is a weight with 1 as input. n is the weighted input into 

the transfer function. a  is the layer output vector. y is the 

output vector from the network. The transfer function for the 

hidden layer is tansig and for the output layer is purelin. The 

network can be built with multiple hidden layers to enhance 

it’s effectiveness. 

Therefore the following ANNs(a-c) with the respective 

inputs and outputs were built and configured in MATLAB. 

Batch processing is adopted for the training. 

a.) Exon18MicroDelANN: This has input matrix x of 

dimension 126 X 2. The elements range from x1,1 to xR,2 

where R = 126. The number of columns in the matrix is 

based on the number of patients in the training data set.  

b.) Exon19MicroDelANN: This has input matrix x of 

dimension 99 X 16. The elements range from x1,1 to xR,16 

where R = 99. 16 represents the number of patients(both 

normal and mutated) in the training data set. 

c.) Exon20MicroDelANN: This has input matrix x of 

dimension 186 X 2. The elements range from x1,1 to xR,2 

where R = 186. 2 represents the number of 

patients(normal and mutated) in the training data set. 

The output vector y has elements based on the number of 

patients in the training data set . 

If yi = 0 then the patient has non- mutated EFGR 

gene(normal). 

If yi = a (where a>0 and represent the number of deleted 

nucleotides divided by 10) the patient has microdeletion 

based mutated gene(NSCLC cancer). 

 

2.3  The Microdeletion Mutations ANNs  

Using the simulated and normalised genomic patterns with 

our novel algorithms (SimMicrodel and GNEN) and also the 

architecture in Figure 4, different ANNs were built based on 

each of the exons in EGFR’s TK domain that are susceptible 

to mutation in our sample data( exons 18 – 20). 

 

 

 

 

 

 

 

 

 

Fig 4:  Architecture of the genomics based ANN(a feed forward artificial neural network) 
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3. RESULTS AND DISCUSION  

The training datasets of the genomics based ANNs are shown 

in Table 4. The target vector element for each patient 

category was obtained by the number of deleted nucleotides 

divided by 10 . 

Since the dataset is segmented into training and testing 

datasets. After proper training of the ANN with the training 

dataset and the appropriate configurations, the outcome of 

the various experiments performed by altering the number of 

hidden layers in the ANN configuration(Figure 4) and 

utilsing 

 the training datasets (Table 4) is detailed in Table 5. 

Levenberg-Marquardt algorithm was used for all the 

experiments because our study in[22] shows that it is the best 

backpropagation training algorithm for the genomics based 

ANN. 

After proper training,the various patient categories in the 

testing dataset were subjected to different configurations of 

the ANN for 5 different experiments. The outcomes of the 

tests are shown in Table 6. Table 7 shows the details of the 

errors and the minimum errors for each patient category. 

 

 

 

Table 4.  Training datasets target vector elements 

 

 

 

Table 5.  Training experiments(Expts.1 to 5) 

 

S/N Training Parameters Expt. 1 Expt.2 Expt. 3 Expt. 4 Expt.5 

1 

2 

3 

4 

5 

6 

Epoch(iterations) 

Time(seconds) 

Performance(mse) 

Gradient 

Validation check 

No of hidden layers 

6  

4 

2.45 x 10-31 

3.51 x 10-15 

0 

5 

8  

0 

0.00162 

2.45e-15 

4 

2 

6 

0 

5.73e-19 

8.52e-16 

1 

3 

8 

0 

1.92e-20 

2.44e-15 

1 

4 

5 

7 

8.2e-26 

2.06e-12 

0 

6 

 

S/N Patient categories Number of deletions Target vector elements 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Normal Patient 

Patient Category 1 

Patient Category 3 

Patient Category 4 

Patient Category 9 

Patient Category 11 

Patient Category 13 

Patient Category 14 

Patient Category 18 

Patient Category 19 

Patient Category 21 

Patient Category 22 

0 

15 

24 

18 

18 

9 

9 

24 

10 

2 

12 

8 

0 

1.5 

2.4 

1.8 

1.8 

0.9 

0.9 

2.4 

1 

0.2 

1.2 

0.8 
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Table 6.  Testing of the ANN with different patient categories testing datasets in experiments 1-5 

  Normal 

Patient 

 

Patient 

Category 

2 

 

Patient 

Category 

5 

 

Patient 

Category 

6 

 

Patient 

Category 7 

 

Patient 

Category 8 

 

Patient 

Category 

10 

 

Patient 

Category 12 

 

Patient 

Category 16 

 

Patient 

Category 

20 

No of 

deletions 

0 15 15 18 15 15 18 15 18 2 

Expected 

Output 

0 1.5 1.5 1.8 1.5 1.5 1.8 1.5 1.8 0.2 

Expt.1 

Outputs 

0 1.36 1.5 1.83 0.89 1.37 1.34 1.57 1.31 0.93 

Expt.2 

Outputs 

0.0021 1.00 1.84 0.58 1.01 1.13 1.15 0.47 1.14 0.04 

Expt.3 

Outputs 

6.16e-10 0.85 1.09 1.94 0.59 1.33 0.45 1.43 0.82 0.67 

Expt.4 

Outputs 

5.18e-11 1.59 2.42 2.26 1.46 1.57 2.62 1.39 2.42 0.32 

Expt.5 

Outputs 

5.61e-13 1.91 1.12 1.67 1.66 1.30 1.69 1.59 2.05 0.01 

 

 

Table 7.  Experiments 1-5 errors and minimum errors 

Patient   Categories Expt.1 

Errors 

Expt.2 

Errors 

Expt.3 

Errors 

Expt.4 

Errors 

Expt.5 

Errors 

Min. 

Errors 

Normal Patient 

Patient Category 2 

Patient Category 5 

Patient Category 6 

Patient Category 7 

Patient Category 8 

Patient Category 10 

Patient Category 12 

Patient Category 16 

Patient Category 20 

0 

0.14 

0 

0.03 

0.61 

0.13 

0.46 

0.07 

0.49 

0.73 

0.0021 

0.5 

0.34 

1.25 

0.49 

0.37 

0.65 

1.1 

0.66 

0.16 

 

 

6.16e-10 

    0.65 

0.41 

0.14 

0.91 

0.17 

1.35 

0.07 

0.98 

0.47 

 

 

5.18e-11 

0.09 

0.92 

0.46 

0.04 

0.07 

0.82 

0.11 

0.62 

0.12 

 

 

5.61e-13 

0.41 

0.38 

0.13 

0.16 

0.2 

0.11 

0.09 

0.25 

0.19 

0 

0.09 

0 

0.03 

0.04 

0.07 

0.11 

0.07 

0.25 

0.12 
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In Table 8, the appropriate genomics based ANN 

configurations(i.e.experiments) for determining the number 

of mutated(deleted) nucleotides for each patient category are 

illustrated.This is based on the ANN configuration(s) that 

produced the minimum error for the patient category.  The 

training outputs for experiment 5 in MATLAB R2008a are 

shown in Figures 5,6 and 7. 

 

Table 8.  Patient categories and the appropriate ANN 

configurations(experiments) 

 

 

Fig5:  ANN training output for experiment 5 in 

MATLAB R2008a 

 

 

Fig 6:  Performance plot (mse versus epochs) for 

experiment 5 

 

Fig 7:  Regression plot for experiment 5 

4. CONCLUSION  

Tables 7 and 8 show the results of the different genomics 

based ANNs. Our results show that ensembling the ANNs 

and utilising the one with the minimum error to predict the 

number of deleted nucleotides in the cancerous patient is 

highly optimal. We therefore tag this ANN ensembling 

approach as  minimum error voting ensembling. Further 

work on this research will increase the number of 

experiments(ANN configurations) so as to obtain predictions 

that achieve almost zero error. This will further enhance the 

precision of our genomics based ANN for diagnosis of non-

small cell lung cancer(NSCLC) electronically. 

S/N Patient Categories Appropriate Experiments 

(ANN Configurations) 

1 Normal Patient Experiment 1 

2 Patient Category 2 Experiment 4 

3 Patient Category 5 Experiment 1 

4 Patient Category 6 Experiment 1 

5 Patient Category 7 Experiment 4 

6 Patient Category 8 Experiment 4 

7 Patient Category 10 Experiment 5 

8 Patient Category 12 Experiment 1 or 3 

9 Patient Category 16 Experiment 5 

10 Patient Category 20 Experiment 4 
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