Plastic Mannequin-Based Robotic Telepresence for Remote Clinical Ward Rounding

V.O. Matthews
S.I. Popoola
A.A. Atayero

Covenant University, Ota, Nigeria

Presented at
The 2017 International Conference of Systems Biology and Bioengineering (ICSBB’17)
World Congress on Engineering (WCE 2017)
London, United Kingdom

5th July, 2017.
• Inaccurate medical diagnosis may result to death of patients.

• Advances in Information and Communication Technologies (ICTs) can be readily exploited to solve the challenges confronting the provision of quality healthcare delivery, especially in rural areas.

• There is usually shortage of qualified medical experts in remote health facilities.
Introduction (Cont’d)

• The cost and risk associated with travelling over a long distance to seek medical attention in urban centers is also high.

• Overdependence of rural dwellers on health facilities in the cities can increase mortality rate in cases of emergency.
Introduction (Cont’d)

• It is, therefore, necessary to leverage available technologies to provide urgent solution to this problem.
• Robotic telepresence creates an impression of the physical presence of an object at a remote location.
Research Aim

- This work is aimed at reducing the cost of mobile robotic telepresence solution for remote ward rounding using plastic mannequin and solar photovoltaic technology.
System Design Method

• An IP camera was fixed in each of the eye sockets of the plastic mannequin.
 - These cameras are connected to a mini-computer embedded in the plastic mannequin.

• A Wi-Fi module establishes an Internet connection between remote physicians and rural healthcare facilities.
Figure 1: Block Diagram of Plastic Mannequin-Based Telepresence
In addition, most of these communities are not even connected to the power grid. Therefore, the system is powered by a solar photovoltaic energy source to provide a cheap and reliable power system.
• Another unique feature of this solution is that it gives the patient a better impression of the physical presence of a physician.

• This development will increase the adoption of robotic telepresence for remote clinical ward rounding in developing countries.
System Implementation

• The hardware part of the system include:
 • Two IP cameras;
 • Mini-computer;
 • Wireless network transceiver; and
 • Audiovisual system.
System Implementation (Cont’d)

Of the two cameras fixed into the eye sockets of the mannequin, one is intended to enable remote access for a distant-consultant while the other is reserved for a specialist.

This is aimed at facilitating professional collaboration to boost the quality of healthcare delivery in the rural areas of developing nations.
• The IP cameras are securely accessible to the health professionals via a web server application.

• For the audiovisual sub-system, a microphone is fixed on the neck section of the mannequin.

• Hence, the remote users can easily pick up acoustic signals from the clinical ward for effective communication.
System Implementation (Cont’d)

• The well-perforated chest part of the mannequin houses the speaker.
• A (12-volt DC motor) four-wheel movement support is designed as the base carriage.
• The program codes of the system is loaded to a mini-computer located within the plastic mannequin.
System Implementation (Cont’d)

Figure 2: Flow Chart of Web Server Operation
System Implementation (Cont’d)

• A client-server model was used for the webserver and Hypertext Transfer Protocol (HTTP) forms the webpages.
• This module links the remote user to the robotic telepresence system.
• The Apache webserver runs on a dedicated computer.
Figure 3: Plastic Mannequin-Based Robotic Telepresence
Conclusion

• We have reduced the cost of mobile robotic telepresence solution for remote ward rounding using plastic mannequin and solar photovoltaic technology.
• This successfully minimized the overall cost of the system ($456).
• Also, the system was designed to operate on solar PV system to ensure availability of required electrical power at low cost.

• After a proper authentication process, a medical consultant based in anywhere can easily log in to the web or mobile application platform.
Conclusion

• The developed system provides a cost-effective solution for patients with minimum literacy to conveniently manage their medications, taking the right dosage of medicine at the prescribed time as automated by the system.
Conclusion

• In clear departure from existing robotic telepresence systems, our solution gives a better impression of the physical presence of a medical personnel.
References

Thank You