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The synergistic effect of the corrosion inhibition properties of 2-methoxy-4-formylphenol and sodium
molybdenum oxide on the electrochemical property of 3CR12 ferritic stainless steel in 2M H2SO4 acid
solution was assessed through coupon analysis, potentiodynamic polarization technique, IR spectroscopy
and micro-analytical technique. Experimental data showed the combined admixture effectively inhibited
the steel corrosion at the concentrations analyzed with a maximum inhibition efficiency of 94.47% and
89.71% from coupon analysis and potentiodynamic polarization due to the electrochemical action and
inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mech-
anism of the redox reactions responsible to corrosion and surface deterioration. Results from corrosion
thermodynamic calculations showed chemisorption adsorption mechanism. Infrared spectroscopic
images exposed the functional groups of the molecules involved for the corrosion inhibition reaction.
Micro-analytical images showed sharp contrast in surface morphology between the inhibited and cor-
roded test specimens under study. Cracks, intergranular and pitting corrosion in addition to severe sur-
face deterioration was observed in the uninhibited samples. Inhibitor adsorption fits the Langmuir
isotherm model.
� 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Stainless steels are extensively applied industrially such as in
desalination plants, petrochemical, construction, chemical process-
ing, pharmaceutical, power generating plant, industrial cleaning,
oil well acidizing and pickling process etc. because of their inher-
ent stability, stable corrosion resistance and good mechanical
properties. The excellent corrosion resistance is primarily as a
result of the chemically produced oxide film which formed on its
surface when exposed to an electrolyte. The film is the product
of chemical interaction between iron substrate metal, chromium
oxides formed and hydroxides at the metal-film interface [1]. The
strength of the passive film is a product of the environment with
which the stainless is exposed to and the alloy content. Corrosion
deterioration of stainless steels is a major industrial problem with
numerous investigators working to assess and control it. Most
steels tends to be unstable in some conditions due to their inherent
characteristics, reacting with the environments, forming a chemi-
cal compound in a more stable and lower energy state [2]. Damage
due to corrosion is responsible for fluid leakages, structural weak-
ness and eventual failure of stainless steels. This is responsible for
the high cost for inspection/monitoring, repair/replacement and
high cost of industrial end product, thus the need for cost effective
corrosion control and inhibition measures [3]. 3CR12 ferritic stain-
less steel is the utility steel with the exceptional property high
temperature and corrosion resistance as in other steel products
coupled with their weldablity and formability. The steel is low
priced with significant chromium content produced from the mod-
ification of grade 409 steel. It is resistant to mild corrosion and wet
abrasion from strong acids and alkalis, and cracking resulted from
chloride stress corrosion. The steel is employed in applications
where aluminum, galvanized and carbon steels underperforms,
however, its drawback is low resistance to crevice and pitting cor-
rosion in chloride containing solutions.

One of the most cost proven and reliable means of preventing
corrosion is through the consistent application of corrosion inhibi-
tors. Inhibitors are generally applied to significantly reduce corro-
sion degradation on stainless steels. Chemicals of organic origin
and constituents have been proven to be very effective corrosion
inhibiting agents for a wide variety of steels in acidic medium.
Use of organic compounds for corrosion inhibition has been
extensively studied and researched into [4,5]. Previous research



Fig. 1. Molecular structure of MPSB components (a) sodiummolybdenum oxide, (b)
2-methoxy-4-formylphenol.

Table 2
Molecular properties of the MPSB inhibiting compound.

S/
N

Compound Molecular
Formula

Molar Mass
(gmol�1)

1 Sodium molybdenum
oxide

Na2MoO4 241.95

2 2-Methoxy-4-
formylphenol

C8H8O3 152.15
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has shown that organic compounds with one or more polar, hete-
rocyclic functional groups and heteroatoms (N, O and S) with p-
electrons are quite efficient in corrosion prevention [6]. The corro-
sion inhibition behavior of these organic compounds is the product
of electrochemical interactions with metallic surfaces through
chemisorption adsorption mechanism. The frequency of active
centers of inhibitor adsorption, the degree of charge, the adsorp-
tion type, and the extent of exposed surface area covered of the
compound control inhibition efficiency. The size, dimension and
mass of the organic molecule also have significant impact of corro-
sion inhibition [7]. Molybdate based inhibitors are mildly effective
in controlling anodic degradation of stainless steel in various aque-
ous neutral solutions [8–12]. They are non-toxic, environmentally
sustainable corrosion inhibitors for the protection of soft-water
cooling systems though there are few reports in literature on the
protective properties of molybdate salts in acid solution. Their
basic function in corrosion inhibition is adsorption onto metallic
alloy exposed area to suppress the reactions associated with col-
lapse of passive film [13,14]. Augustynski [15] suggested from his
research that the corrosion inhibition property of the molybdate
anions is probably due to reduction of Mo6+ to Mo4+ during the
inhibition process. Current research has shown that one of the
most important processes of inhibitor development is to improve
the corrosion inhibition properties of existing inhibitors through
synergistic effect in combination with others, thus this research
aims to study the synergistic effect of 2-methoxy-4-formylphenol
and sodium molybdenum oxide on the corrosion inhibition of
3CR12 ferritic stainless steel in dilute H2SO4 acid [16–19].

Experimental methods

Material

3CR12 ferritic stainless steel (FSS) with average elemental com-
position as shown below (Table 1) analysed at the Physical Metal-
lurgy Laboratory, Department of Mechanical Engineering, College
of Engineering, Covenant University, Ota, Ogun State, Nigeria. The
steel is of a cylindrical shape with a diameter of 1.7 cm.

Inhibitor

Combined admixture of equal proportions of sodium molybde-
num oxide and 2-methoxy-4-formylphenol (MPSB), both as solid
white precipitates (synthesized) were obtained from BOC Sciences,
USA. Their structural formulae are shown in Fig. 1. Table 2 shows
the chemical properties of the inhibiting compound. MPSB was
prepared in concentrations of 6.982 � 10�6 M, 1.396 � 10�5 M,
2.095 � 10�5 M, 2.793 � 10�5 M, 3.491 � 10�5 M and
4.189 � 10�5 M in 200 mL of 2 M H2SO4 media.

Acid test solution

2 M H2SO4 acid solutions were prepared using analytical grade
of the acid (98%) with deionized water.

Sample preparation of ferritic stainless steels

The FSS samples were machined into seven (7) test pieces with
mean length of 0.7 mm. The samples were further prepared metal-
Table 1
Elemental composition of FSS.

Element C Si Mn P

Composition (%) 0.050 0.182 1.830 0.12
lographically using silicon carbide grit papers of 80, 300, 600 and
1000 grits before polishing to 6 lm with Pen Struers diamond
paste. Each sample was cleansed with deionized water and propa-
none, and placed in a desiccator for coupon analysis and potentio-
dynamic polarization test according to ASTM G1 - 03(2011).
Coupon measurement

Ferritic steel coupons were measured before separate immer-
sion in 200 mL of the corrosion test media for 240 h at of 30 �C.
The samples were taking out separately from the electrolyte at
24 h meantime, cleansed with deionized water and propanone,
dried and measured again according to ASTM G31-72(2004). Plots
of corrosion rate values, q (mm/y) and MPSB inhibition efficiency, g
(%) against measured time T were outlined from the results
obtained during the corrosion test period. Corrosion rate ðqÞ is
determined as follows as [20].

q ¼ 87:6x
DAT

� �
ð1Þ

x is the mass loss in mg, D is the density in g/cm3, A is the total
surface area of the coupon in cm2 and 87.6 is a constant. Inhibition
efficiency (g) was determined from the expression below;

g ¼ x1 �x2

x1

� �
� 100 ð2Þ

x1 andx2 are the mass loss at predetermined concentrations of
MPSB. g was determined at the MPSB concentrations studied dur-
ing the evaluation period. Surface coverage was evaluated from the
expression [21,22]:

h ¼ 1�x2

x1

� �
ð3Þ

where h is the degree of MPSB compound, adsorbed per gram of the
steel samples. x1 and x2 are the mass loss of each steel coupon at
predetermined concentrations of MPSB in the acid media.
S Cu Ni Cr Fe

0.017 0.102 1.3 13 82.80
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Potentiodynamic polarization technique

The polarization test was achieved with the cylindrical ferritic
steel electrodes encased in acrylic resin mounts with exposed sur-
face area of 254 mm2. The electrodes were prepared with respect
to ASTM G59-97(2014). Electrochemical studies were conducted
at 30 �C using Digi-Ivy 2300 potentiostat and glass cell containing
200 mL of the corrosive test solution at predetermined concentra-
tions of MPSB. Platinum rod was used as the counter electrode and
silver chloride electrode (Ag/AgCl) as the reference electrode. Mea-
surement was done from �1.5 V to +1.5 V at a scan rate of
0.0015 V/s according to ASTM G102-89(2015). Corrosion current
density (jcr) and corrosion potential (Ecr) were calculated from
the Tafel outline of potential (V) versus current (log), (A cm2).
The corrosion rate ðqÞ and the inhibition efficiency (g2, %) were
evaluated from the expression below.

q ¼ 0:00327� Jcorr � Eq

D
ð4Þ

jcorr is the current density in A/cm2, D is the density in g/cm3; Eq is
the sample equivalent weight in grams. 0.00327 is a constant for
corrosion rate calculation in mm/y [23,24]. The inhibition efficiency
(g2, %) was calculated from corrosion rate values with the equation
below;

g2 ¼ 1� q2

q1

� �
� 100 ð5Þ

q1 and q2 are the corrosion rates with and without MPSB inhibitor.

Optical microscopy characterization

Optical micrographs of the steel surface and morphology of the
corroded and inhibited ferritic stainless steel samples was studied
after coupon measurement with the aid of Omax trinocular optical
Table 3
Polarization results for FSS in 2M H2SO4 at 0%–1.5% MPSB.

Sample MPSB
Conc. (M)

MPSB
Conc.
(%)

Corrosion
rate (mm/y)

Inhibition
efficiency (%)

Corrosion
current (A)

Corros
densit

A 0 0 21.03 0 4.33E�03 1.91E�
B 6.98E�06 0.25 3.97 81.13 8.18E�04 3.60E�
C 1.40E�05 0.5 3.65 82.64 7.52E�04 3.31E�
D 2.09E�05 0.75 3.74 82.22 7.71E�04 3.39E�
E 2.79E�05 1 3.30 84.30 6.81E�04 3.00E�
F 3.49E�05 1.25 2.52 88.01 5.20E�04 2.29E�
G 4.19E�05 1.5 2.16 89.71 4.46E�04 1.96E�
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Fig. 2. Anodic and cathodic polarization plot
metallurgical microscope at the Physical Metallurgical Laboratory,
Department of Mechanical Engineering, Covenant University, Ogun
state, Nigeria.
Infrared spectroscopy

The MPSB compound in H2SO4 acid was exposed to specific
range of infrared ray beams. The transmittance and reflectance of
the infrared beams at various frequencies were decoded and trans-
formed into an IR absorption plot consisting of spectra peaks. The
spectral pattern was evaluated and equated according to IR absorp-
tion table to identify the functional groups involved in the corro-
sion inhibition reactions.
Result and discussion

Potentiodynamic polarization studies

Table 3 shows the data for influence of MPSB inhibitor on the
corrosion polarization behaviour of FSS in 2M H2SO4. Fig. 2 shows
the polarization plot obtained. Observation of Table 3 depicts the
significant variation in corrosion rate and polarization resistance
values for FSS samples at 0.25%–1.5% MPSB concentration in com-
parison to FSS sample at 0% MPSB. The corrosion rates for the
inhibited FSS samples decreased consistently till 1.5% MPSB. This
observation corresponds with the values obtained for polarization
resistance (Table 3). At 0.25% MPSB the inhibition efficiency is at
the lowest (81.13%) but increases with increase in MPSB concen-
tration to 89.71% at 1.5% MPSB. The results show that MPSB effec-
tively inhibits the corrosion of FSS in H2SO4 at the concentrations
studied. The corrosion current also decreased significantly with
increment in concentration of MPSB. The inhibition efficiency of
MPSB is dependent to a minimal degree on the values of its
ion current
y (A/cm2)

Corrosion
potential (V)

Polarization
resistance, Rp

(X)

Cathodic
potential, Bc

(V)

Anodic
potential, Ba

(V)

03 �0.376 7.28 �1.044 3.10E�02
04 �0.313 36.30 �8.804 3.00E�02
04 �0.292 45.00 �8.156 3.42E�02
04 �0.294 38.18 �8.636 2.97E�02
04 �0.270 44.95 �7.705 3.09E�02
04 �0.253 40.61 �4.891 2.13E�02
04 �0.283 45.99 �7.002 2.07E�02

 -0.28 -0.23 

gCl 

0%       MPSB 

0.25%  MPSB 

0.5%    MPSB 

0.75%  MPSB 

1%       MPSB 

1.25%  MPSB 

1.5%    MPSB 

s for FSS in 2M H2SO4 at 0%–1.5% MPSB.



Table 4
Data for 3CR12 ferritic steel in 2M H2SO4 at predetermined concentrations of MPSB from weight loss analysis.

FSS Samples Weight Loss (g) Corrosion Rate (mm/yr) MPSB Inhibition Efficiency (%) MPSB Concentration (%) MPSB Concentration (Molarity)

A 11.264 0.060 0 0 0
B 1.617 0.009 85.65 0.13 6.9819E�06
C 1.479 0.008 86.87 0.25 1.3964E�05
D 2.165 0.012 80.78 0.38 2.0946E�05
E 0.711 0.004 93.68 0.50 2.7928E�05
F 0.367 0.002 96.74 0.63 3.4909E�05
G 0.623 0.003 94.47 0.75 4.1891E�05
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concentration in the acid media. This is due to the presence of an
effective MPSB film which prevents corrosion by limiting the diffu-
sion of sulphate anions (SO4

2�) to the metal surface, as well as
inhibiting the electrolytic transport of metallic cations. It is also
suggested that MPSB modifies the corrosive environment, signifi-
cantly weakening the oxidizing strength of the corrosive media
[25,26].

The anodic/cathodic polarization plots in Fig. 2 shows active
and anodic-passivation polarization behavior with and without
MPSB compound. The plot for 0% MPSB shows corrosion potential
of �0.376 V which corresponds to values of active corrosion reac-
tions and deterioration of the FSS. The polarization plots for FSS
samples with varying degree of MPSB concentration occurred at
corrosion potentials (�0.313V–�0.283 V) which correspond to
passivation potentials. Even though similar electrochemical behav-
ior was observed, the corrosion potential shifts entirely towards
anodic values suggesting that the inhibition mechanism is proba-
bly through suppression of the anodic oxidation reactions respon-
sible for FSS dissolution (Fe? Fe2+ + 2e�) [27]. This phenomenon is
further supported from results obtained for polarization resistance
on Table 3 where the values increased from 36.39X–45.99X. The
molybdate ion is an anodic corrosion inhibitor and the synergistic
effect of 2-methoxy-4-formylphenol component of MPSB does not
change its inhibition property [17]. Previous research has shown
that the 2-methoxy-4-formylphenol component of MPSB is a
mixed type inhibitor with strong influence on cathodic reactions.
Its physicochemical characteristics are due to the composition of
its functional groups (aldehyde, hydroxyl, and ether) and their
electrochemical property [28]. This property is through the charge
of the carbonyl group and the astringency of any a-hydrogen
within their structure. The hydroxyl groups within the compound
are polarized in the electrolyte to enable the O2 atom release elec-
tron. The hydroxyl group causes electrostatic attraction with the
metal [29]. The compound accumulates a passive hydrophobic cov-
ering of inhibitor molecules adsorbed onto the alloy, which pre-
vents the dissolution of the metal within the aqueous solution.

The precipitation Fe2+-MPSB on the anodic area of the steel con-
trols the anodic reaction. The reduction reaction is under the influ-
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Fig. 3. Plot of corrosion rate versus exposure time for
ence of OH� formation on the cathodic areas of the metal surface.
The anodic and cathodic Tafel slopes were slightly influenced by
changes in MPSB concentration suggesting that changes to the
redox reactions relating to the mechanism of inhibition is through
decrease in the surface area of FSS for corrosion process [30]. The
optimal change in corrosion potential in H2SO4 is 123 mV in the
anodic direction, thus MPSB is an anodic type inhibitor [29,31].
The molybdate ion component of MPSB has a higher radius than
the sulfate anion, thus a higher specific adsorption [32]. It absorbs
onto the steel surface and is reduced (Mo6+ reduces to Mo4+, MoO2

is formed) according to the reaction in Eq. (6) [14]. The reaction of
H+ with O2� simultaneously results in the dilution of local solution
acidity causing a less oxidizing solution. The molybdate ion scav-
enges the dissolved oxygen, stifles the anode reaction and supports
the passivation of the metal surface.

MoO2�
4 þ 4Hþ þ 2e� ¼ MoO2 þ 2H2O ð6Þ
Coupon measurements

Calculated results obtained for weight loss (ῶ), corrosion rate
ðqÞ and percentage inhibition efficiency ððÞ for the interaction of
MPSB inhibiting compound on FSS in H2SO4 solutions are pre-
sented in Table 4. Figs. 3 and 4 show the plot of corrosion rate
and MPSB inhibition efficiency versus exposure time in the acid
media. MPSB had a strongly influenced the reduction-oxidation
corrosion reactions responsible for FSS degradation. MPSB being
an anodic inhibitor as discussed previously, its inhibition mode is
through adsorption whereby it precipitates on the reactive sites
of the steel surface. The release of FSS cations into the acid solution
through the electrochemical action of sulphate ions was signifi-
cantly minimized. Observation of Table 4 and Fig. 3 show the
significant variation in corrosion rate values between the uninhib-
ited FSS sample and samples inhibited by MPSB similar in trend to
observation from potentiodynamic polarization test. The corrosion
rate for FSS at 0% MPSB concentration decreases steadily till the
end of the exposure period. Addition of predetermined MPSB
200 300 
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3CR12 ferritic steel in 2M H2SO4 at 0–1.5%MPSB.
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concentration (0.25% MPSB–1.5% MPSB) caused the corrosion rate
values to decline sharply. The values were generally the same
throughout the experiment.

The strong absorption of MPSB ionized molecules onto FSS sur-
face is due to the synergistic effect of the sodium molybdenum
oxide and 2-methoxy-4-formylphenol components of MPSB com-
pound. Adsorption by 2-methoxy-4-formylphenol on the cathodic
and anodic area takes place through the p-electrons of molecular
bond in the rings and lone pair of electrons from the hetero atoms
present, which suppresses the anodic oxidation of the steel. This
component of MPSB consists of electron rich heteroatoms involved
in Lewis acid-base interaction with the steel [33]. They act through
formation of a protective film over the exposed metal surface. The
film adsorbs through chemical reaction mechanism onto the steel
preventing the oxidation reaction of corrosive ions with the steel
[34]. The molybdate ions of sodium molybdenum oxide adsorb
on the surface of the steel and form a complex with the ferrous
(Fe+2) ions. The complex though unstable, oxidizes in the presence
of dissolved oxygen to give insoluble ferric (Fe+3) ions which forms
an insoluble protective barrier of ferric molybdate [35].
Adsorption isotherm

Adsorption of MPSB ionized molecules on FSS surface occurs at
the metal ion/solution interface and is subject to the intermolecu-
lar/electrostatic forces at the interface. The ionization potential,
metallic surface charge/properties, electronic properties, degree
of ionic adsorption and the electrochemical potential strongly
influence the mechanism and type of adsorption [36]. Further
studies of the adsorption characteristics of MPSB compound were
done to understand the interaction mechanism between the MPSB
and FSS ions. Langmuir adsorption isotherm model amongst other
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isotherms gave the best fit for the results obtained for MPSB on FSS
in H2SO4 acid solution.

The conventional depiction of the Langmuir isotherm is shown
in Eq. (7) below;

h ¼ KadsC
1þ KadsC

� �
ð7Þ

h is the degree of surface coverage of the inhibitor on the alloy
surface, C is MPSB concentration in H2SO4 acid media, and Kads is
the equilibrium constant of the adsorption process. The plots of C

h

versus the MPSB concentration were linear (Fig. 5) justifying the
Langmuir adsorption.

According to Langmuir, MPSB cations adsorb at specific reaction
sites at the metal/ solution boundary causing the slight deviation
of slope from unity in Fig. 5 [37,38]. Increase in MPSB concentra-
tion causes changes in the energy and force of interaction with
water molecules as MPSB molecules increasingly adsorb on the
steel.

Thermodynamics of the corrosion inhibition mechanism

Results of Gibbs free energy (DGo
ads) for MPSB adsorption on

FSS (Table 5) was evaluated from Eq. (8).

DGads ¼ �2:303RT log½55:5Kads� ð8Þ
where 55.5 is the molar concentration of water in the solution, R is
the universal gas constant, T is the absolute temperature and Kads is
the equilibrium constant of adsorption for MPSB. Kads is related to
surface coverage (h) from Eq. (8).

The heterogeneous characteristics of FSS morphology cause the
changes in DGo

ads of adsorption for MPSB with changes in surface
coverage values [39–41]. This relationship is responsible for the
y = 1.0021x + 2E-06 
R² = 0.9885 

-05 2.5E-05 3.0E-05 3.5E-05 4.0E-05 4.5E-05 

entra�on (Mol/L) 

centration (C) in 2M H2SO4.



Table 5
Data for Gibbs free energy, surface coverage and equilibrium constant of adsorption for 0–1.5% MPSB in 2 M H2SO4.

Samples MPSB concentration (%) Surface coverage (h) Equilibrium constant of adsorption (K) Gibbs free energy, DG (Kjmol�1)

A 0 0 0 0
B 0.25 0.856 854698.9 �43.80
C 0.5 0.869 473734.0 �42.34
D 0.75 0.808 200697.9 �40.21
E 1 0.937 531040.7 �42.62
F 1.25 0.967 850030.1 �43.79
G 1.5 0.945 407640.1 �41.96
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differences in adsorption energies presented in the Table 5. The
negative values of DGo

ads show the adsorption mechanism is spon-
taneous [42]. Values of DGo

ads around �40 kJmol�1 depict
chemisorption adsorption reactions. Reactions at this value involve
charge sharing or transfer between the inhibitor cations and the
valence electrons of the steel forming a co-ordinate covalent bond.
The highest DGo

ads value in H2SO4 is �43.80 kJ mol�1 at 0.25%
MPSB while the lowest is �41.96 kJ mol�1 at 1% MPSB.
IR spectroscopy

The IR spectra of 2M H2SO4/MPSB solution before and after the
corrosion tests are shown in Fig. 6. Observation of the spectra
peaks shows that the test solution had almost similar peaks; how-
ever, the intensities decreased/increased at some spectra peaks
after the corrosion test due to the reaction of MPSB with FSS and
acid to form chemical complexes. The spectra peaks of 3343.52,
1635.63, 1182.28, 1047.36, 871.14 and 562.14 cm�1 before the cor-
rosion test generally corresponds to O–H stretch, H–bonded (alco-
hols, phenols), N–H stretch (primary, secondary amines, amides)
and C–H ‘‘oop” (aromatics) [43]. The amines and hydroxides func-
tional groups have been shown from previous research to be good
corrosion inhibitors [44–46]. The spectra peak after corrosion test
presents the same molecular functional groups at near similar peak
values of 3330.91, 1635.77, 1181.46, 1047.21 and 873.59 cm�1.
Fig. 6. IR spectra of MPSB compound in 2M H
Comparison of the spectra before and after the corrosion test
clearly reveals the decrease in transmittance indicators for the
functional groups earlier mentioned, they involved in the electro-
chemical reaction resulting in inhibition of the steel through
adsorption. The intensity of the peaks of 1181.46, 1047.21 and
873.59 cm�1 after the corrosion test significantly decreased due
to the strong reaction of the inhibitor molecules at those peaks
with the metal through chemical reaction mechanism. The groups
instigates the formation of stable chemical precipitates between
the substrate metal composition of FSS and MPSB compound. The
complexes tend to suppress the corrosion reaction mechanisms
inhibiting FSS surface [47].
Optical microscopy analysis

Optical micrographs of FSS samples before and after the corro-
sion test are shown from Figs. 7a–9c. The micrographs of FSS sam-
ples before the test at mag. x4, x40 & x100 are shown in Fig. 7(a)–
(c). The micrographs depict the sample surface after undergoing
metallographic procedures and clearly reveal the serrated edges
after machining. Fig. 8(a) shows the micrograph of the uninhibited
FSS after the corrosion test. Morphological deterioration and of the
surface topography can be observed due to the redox electrochem-
ical reactions of corrosive ions present in the acid media. The ions
cause the release of valence electrons and diffusion of Fe2+ cations
2SO4 acid before and after FSS corrosion.



(a) (b) (c)

Fig. 7. Micrographs of FSS before corrosion test (a) mag. x4, (b) mag. x40 and (c) mag. x100.

 (a)                                             (b)                                            (c)

Fig. 8. Micrographs of FSS after corrosion test without MPSB compound (a) mag. x4, (b) mag. x40 and (c) mag. x100.

(a) (b) (c)

Fig. 9. Micrographs of FSS after corrosion test with MPSB compound (a) mag. x4, (b) mag. x40 and (c) mag. x100.
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into the acid solution. Zooming in on Fig. 8(a), Fig. 8(b) clearly
identifies some specific areas of morphological deterioration espe-
cially at the grain boundary. This clearly shows that intergranular
corrosion is partly responsible for the corrosion of FSS, micro-pits
due to pitting can also be observed though less visible. These
observations [Fig. 8(a)–(c)] show that FSS steel cannot be applied
in high sulphate containing industrial environments due to rapid
deterioration. The micrographs in Fig. 9(a)–(c) contrast the images
in Fig. 8(a)–(c); Fig. 9(a)–(d) show the images of FSS samples from
the electrolyte with MPSB compound after coupon analysis. The
images reveal a slightly worn surface in comparison to the
untested specimens in Fig. 7(a)–(c). MPSB compound effectively
protected the FSS samples and the images conforms the results
obtained from weight loss and potentiodynamic polarization. The
combined action of molybdate ions and heteroatoms of the pheno-
lic aldehydes adsorbs onto the steel, reacting with the surface
through chemical reaction mechanism.
Conclusion

MPSB performed effectively in the acid media inhibiting the
corrosion of 3CR12 ferritic stainless steel. The corrosion protection
efficiency values of the compound deviated slightly at the concen-
trations evaluated as a result of the inhibition reaction of the
molecular functional groups and heteroatoms of the compounds
which influenced the mechanism of the redox electrochemical
reactions and protecting the steel from corrosion. The compound
was determined to be anodic type inhibitor. Thermodynamic cal-
culations confirm strong chemisorption reaction mechanism and
the adsorption aligned with the Langmuir adsorption isotherm.
Infrared spectra images confirmed the adsorption of primary and
secondary amines and hydroxides onto the steel.
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