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ABSTRACT 

Weibull distribution has been applied to many areas in ecological studies and engineering. Application of 
the Weibull and other probability distributions in ecology are mainly in fitting ecological data which is very 
vital in revealing latent characteristics of the object of study. The use of the ordinary differential equations 
(ODE) in fitting has not been studied in ecological studies. Ordinary differential calculus was used to 
obtain the homogenous ODE of the probability density function (PDF), quantile function (QF), survival 
function (SF), inverse survival function (ISF), hazard function (HF) and reversed hazard function (RHF) 
whose solutions are their respective functions of the Weibull distribution.  Different classes of ODEs were 
obtained. The novelty of this proposed method is applied to radiation data.     
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1. INTRODUCTION 
 

Calculus is a very key tool in the determination of mode of a given probability distribution and in 

estimation of parameters of probability distributions, amongst other uses. Probability density function 

(PDF) can be expressed as ODE whose solution is the PDF. Some of which are available. They 

include: Laplace distribution (Johnson et al., 1994), beta distribution (Elderton, 1906), raised cosine 

distribution (Rinne, 2010), Lomax distribution (Balakrishnan and Lai, 2009), eta prime distribution or 

Inverted beta distribution (Johnson et al., 1995).                        

 
1.1 Weibull Distribution in Ecological Studies 

 
Weibull distribution has been applied to many areas in ecological studies. Application of the Weibull 

and other probability distributions in ecology are mainly in fitting ecological data which is very vital in 

revealing latent characteristics of the object of study.                                                                 

Stauffer (1979) derived in details, the mathematical derivation of the Weibull distribution. This was 

inspired by the broken stick model widely used in ecology in studying species-abundance curves. 
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Fargo et al. (1982) used the PDF and CDF of the Weibull distribution to fit the within-tree population of 

the studied tree species. Hogg and Nordheim (1983) used modified Weibull distribution to obtain 

survival curves of the eggs and larvae of the studied species while Luo et al. (2015) and Baek et al. 

(2017) used Weibull distribution to obtain the survival curve of their studied species. Legge and Krupa 

(1989) used the Weibull family of distribution to model air pollution data. Newman and Aplin (1992) 

observed that the Weibull distribution is the best in fitting survival time modeling in toxicology. 

 Nanos and Montero (2002), Sarkkola et al. (2003), Neeff et al. (2003), Sarkkola et al. (2005), Wang 

et al. (2010), Chan et al. (2011), Forrester et al. (2013) and Navarro-Cerrillo et al. (2014) used the 

Weibull distribution to model and predict the diameter distributions of stand. Tjørve (2003) noted from 

review that the Weibull distribution is a sigmoid model that can prove useful in modeling species-area 

relationships. He et al. (2004) used Weibull distribution and five other probability distributions to 

characterized patch size distributions of their studied district. In that research, lognormal distribution 

performed better in fitting the data than the other five distributions. MacKenzie et al. (2004) applied 

the Weibull distribution to model the densities and diversity of invertebrates at Lake Michigan and the 

abiotic factors that affect the dynamics of the invertebrates. Yang et al. (2004) proposed a model with 

Weibull and exponential models as special case, which can be applied in the modeling of fire 

disturbances in forest landscapes. The model was an improvement over the exponential and Weibull 

fire interval distribution as it accounts for the separation of fire ignition from fire occurrence. Eliopoulos 

et al. (2005) used the Weibull distribution in the estimation of the survival rate of the studied parasitoid 

when subjected to temperature and other factors. Al-Saidy et al. (2005) used two forms of Weibull 

distributions to estimate the bias of three measures of overlap used in quantitative ecology. McKenzie 

et al. (2006) used Weibull and other distributions to model and characterize some factors that affect 

the spatial and temporal distribution of fire occurrence in forests. In that study, Weibull distribution was 

used to fit real and simulated exhibited different parameters in modeling temporal trends in fire 

hazards. Carlson et al. (2008) used the three parameter Weibull distribution to determine the 

relationship between the changes in diameter distribution and mid-rotation fertilization. Kapur et al. 

(2008) developed dynamic stock and flow model, utilizing the gamma, lognormal and Weibull 

distributions to estimate the in-use cement stocks in the United States. Moritz et al. (2009) observed 

using the cedar fire in 2003 in southern California as a case study, that the parameters estimates of 

the Weibull distribution was able to fit adequately the previous fire frequency analysis of the 

shrubsland even with the use of censored data.  

Bonou et al. (2009) used the Weibull distribution to model the stem diameter and height structure of 

the endangered tree species found in the four communities in the Lama Forest reserve of Benin 

Republic in West Africa. Li et al. (2011) observed that the Weibull and gamma distributions performed 

better than the normal distribution in simulating the distribution of leaf and branch. Huffman et al. 

(2012) used Weibull distribution to model the interrelationship among key structural elements and time 

since fire in forest ecological management. Studds et al. (2012) concluded from his research that 

Weibull distribution provides best fits for assessing the probability of dispersal across the breeding 

range of their studied bird species. 



 Parameter estimates from strongly skewed probability distributions are often encountered in ecology, 

for example in diameter stands of trees. Most often ecologists are confronted with the tasks of 

interpreting ecological results. This is due to the variability of the underlying parameters of the 

distributions that was used to fit the data. This is further complicated by the confounding effects of the 

parameters due to errors in measurement and experimentation. In order to minimize the effects of the 

aforementioned problems, Taubert et al. (2013) investigated the bias nature of the parameters of 

three frequently used probability distributions namely; Weibull, negative exponential and power-law 

distributions.  

Akinci et al. (2013), Guseinoviene et al. (2014) and Sedaghat et al. (2016) used the Weibull 

distribution to estimate and model wind speed. Jankowski et al. (2013) used Weibull distribution to 

determine viral count in a disease ecological study. Zabel et al. (2014) used modified Weibull, Weibull 

and exponential distributions to model migrating adult salmonids. In a study of different growth curve 

models, Dasgupta (2015) noted that growth curves of harvesting and forecast of market supply of yam 

can be approximated by the Weibull distribution. Gao and Perry (2016) used the cumulative Weibull 

regression to model the bio-geographical patterns of their study subjects. Subedi and Fox (2016) used 

Weibull distribution to model soil fertility rating used to predict the effects of fertilizer to the growth of 

loblolly pine.  

In a recent study, Rogeau and Armstrong (2017) noted that the use of Weibull distribution in modeling 

the effect of topography on wildfire distribution in many studies might have left out some effects 

unexplored. All these contributions indicate the fact that Weibull distribution has been applied in 

ecological studies.  

1.2 Ordinary Differential Equations of Probability Functions 
 

Differential equations often arise from the understanding and modeling of real life problems or some 

observed physical phenomena. Newton and Leibniz are believed to be the inventors, obtained from 

calculus. Types of differential equations include: ordinary differential equations, partial differential 

equations, stochastic differential equations, fractional differential equations, neural differential 

equations, delay differential equations and so on.                                                                                        

In science, engineering and social sciences, mathematical models are developed for the 

understanding of physical phenomena. In view of that Enszer et al. (2011) stated that modeling 

dynamic systems is challenging because of the inherent difficulty of incorporating all the uncertainties 

in the parameters into mathematical models.                                                                                    

However, when the physical phenomena are characterized by uncertainties, then statistical models 

are used. This is because some phenomena often follow the same pattern and orientation; they are 

therefore grouped into different general models called probability density functions. The observed 

events may be discrete or continuous. Bernoulli, Geometric, binomial, negative binomial, 

hypergeometric, Rademacher, discrete uniform and Poisson distributions are few examples of the 

discrete case while the normal, reciprocal, trapeizoidal, Nakagami, Rice, Pareto, Gumbel, exponential, 

Johnson SU, gamma, Chi-square, logit-normal and beta distributions are few examples of the 

continuous case. In comparing deterministic and probabilistic models, Calderhead and Girolami (2011) 



emphasized on the usefulness of probabilistic models, such as uncertainty quantification, predictions 

and hypothesis tests on the parameters of the models.                                                                                          

Ordinarily, derivatives are used in the estimation of parameters of the probability density functions. 

The method of maximum likelihood is an example (Akaike, 1998).                                                                                 

Ordinary differential equations (ODE) as an extension to derivatives are indispensable in the 

understanding of physical, social and biological processes. Most often the ODE does not have 

analytic solutions and researchers resort to numerical methods for approximate solutions. One of the 

reasons why the analytic solutions do not always exist is the presence of uncertainties. Over the 

centuries, researchers have classified and grouped these uncertainties into probability density 

functions. In other to fully quantify uncertainties, other functions were created, such as the cumulative 

distribution function, Quantile function, survival function, inverse survival function, odd function, 

hazard function and reversed hazard function.  Incorporation of uncertainties in mathematical 

modeling has been useful in ecology, engineering, epidemiology, disease control, demography, 

psephology, meteorology, astronomy, medicine, geology, finance, ecology, biogeography, sociology, 

economics and so on.                                                                                                                                

ODE has been helpful in statistical and probabilistic models. It can also be seen as a tool for 

measuring uncertainties and prediction for example in engineering analysis (Papadimitriou, 

Katafygiotis and Beck (1995). The outcome is that the solution of the ODE if it exists is the probability 

density function of the model considered. This was the outcome of the result obtained by (Steinsaltz 

et al., 2005), when in modeling mutation as it applied to aging, furthermore, the solution of the ODE 

they formulated for their model converged to the probability density function of the distribution that 

they considered.                                                                                                                                                                                                         

Interestingly, the convergence of solutions are not restricted to the probability density function only, it 

can be extended to the following: kernel density of the distribution (Shotorban, 2000), the parameters 

of the systems defined by the ODEs (Atencia and Joya, 2011) and probability generating function 

(Reed and Hughes, 2002).                                                                                                                                                                        

However, there seems to be an argument on the estimation by ODE and the maximum likelihood, the 

details can be found in Hirose (2011, 2012). The maximum likelihood is limited when the parameters 

that defined the model are huge and is safer to estimate the parameters effectively by the use of ODE.   

The existence and uniqueness of solutions of the ODEs of the models have been considered (Knopoff, 

2013), however, Ghitany et al. (2011) restricted their research scope to the maximum likelihood 

estimators MLEs of the parameters of the class of distribution that they considered.                                                                                                                               

The limitation of the use of ODE in modeling uncertainties is that it does not take into account, the 

time factor (Hall and Gandar, 1996), and the inability of the uncertainties that characterizes a model to 

be fully modeled using the ODEs. This was also a remark made by Banks et al. (2003), as they 

developed some methods of incorporating uncertainties and variability into systems that cannot be 

reduced to ODEs. It is more expensive to incorporate uncertainties into models than to simply fit the 

data into well-known probability distributions.                                                                                                                                                   

The aim of this research is to develop homogenous ordinary differential equations for the probability 

density function (PDF), Quantile function (QF), survival function (SF), inverse survival function (ISF), 



hazard function (HF) and reversed hazard function (RHF) of Weibull distribution as it is observed to be 

commonly applied in ecological research. This will also help to provide the answers as to whether 

there are discrepancies between the support of the Weibull distribution and the necessary conditions 

for the existence of the ODEs.                                                                                                                                 

1.3 Weibull Distribution 
 

This is a continuous and lifetime distribution widely used in survival and lifetime analysis. The 

distribution was named after Swedish mathematician; Ernst Hjalmar Waloddi Weibull. The various 

aspects of the Weibull distribution has been studied or reported in literature. These include: maximum 

likelihood estimation (Menon, 1963; Lemon, 1975); Cohen, 1965), inferences on the parameters 

(Thoman et al., 1969), qualitative reviews (Hallinan, 1993; Pham and Lai, 2007), moments and 

moments of order statistics (Lieblein, 1955), statistical tests (Littell et al., 1979).   

The distribution has witnessed generations, modifications, compounding, extensions and 

parameterization such as: discrete Weibull distribution by Nakagawa and Osaki (1975), generalization 

by Mudholkar et al. (1996), exponentiated Weibull distribution by Nassar and Eissa (2003), Nadarajah 

et al.  (2013) and Shittu and Adepoju (2014), Normalized Weibull distribution by Marabi et al. (2003), 

Beta-Weibull distribution by Lee et al. (2007). Weibull-geometric distribution by Barreto-Souza et al. 

(2011), Transmuted Weibull distribution by Aryal and Tsokos (2011), beta generalized Weibull 

distribution by Singla et al. (2012), beta Weibull Poisson distribution by Percontini et al. (2013), 

Mixture Weibull distributions by Razali and Al-Wakeel (2013), exponentiated generalized Weibull 

distribution by Adepoju et al. (2013).                                                                                                                                                                                        

Also available are: Kumaraswamy modified Weibull distribution by Cordeiro et al. (2014), Weibull-

exponential distribution by Oguntunde et al. (2015), transmuted exponential–Weibull distribution by 

Saboor et al. (2015), Marshall–Olkin exponential Weibull distribution by Pogány et al. (2015), Weibull-

Lomax distribution by Tahir et al. (2015), Weighted weibull distribution by Dey et al.  (2015), additive 

Weibull-Geometric Distribution by Elbatal et al. (2016), Weibull power function distribution by Tahir et 

al. (2016 a), Weibull-Pareto distribution by Tahir et al (2016 b), Weibull–Dagum distribution by Tahir et 

al. (2016 c), Gamma Dual Weibull Model by Castellares and  Lemonte (2016), Marshall-Olkin gamma-

Weibull distribution by Saboor and Pogany (2016), new Weibull-G family of distributions by Tahir et al. 

(2016 d), Kumaraswamy generalized power Weibull distribution by Selim and Badr (2016).                                                                                                        

It is a widely applied probability distribution such as: modeling the chances of occurrence of 

earthquake by Hagiwara (1974), analysis of survival data in ecology by Pinder et al. (1978), inventory 

control by Tadikamalla (1978), forecasting of change in technology by Sharif and Islam (1980), 

ferrography by Roylance and Pocock (1983), metamorphosis of insects by Wagner et al. (1984), 

hydrology by Singh (1987), estimation of wind speed by Seguro and Lambert (2000), modeling 

preservation methods by Mafart et al. (2002) and Bai et al. (2013), modeling cracks in rocks by Wong 

et al. (2006), assessing wind power density by Mohammadi et al. (2016).                                      

 

 
 
 



2. MATERIAL AND METHODS 
 

Ordinary differential calculus was used to obtain the ODEs whose solutions are the PDF, QF, SF, ISF, 

HF and RHF of the Weibull distributions respectively.       

  

3. RESULTS 

This section contains the detailed results. 

3.1 Probability Density Function 

The probability density function of the Weibull distribution is given as;         
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The PDF is characterized by the shape parameter 0,   scale parameter 0  and the support 

0.x                                                                                                                                                                                     

To obtain the first order ordinary differential equation for the probability density function of the Weibull 

distribution, differentiate equation (1), to obtain;    
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The condition necessary for the existence of the equation is , , 0.x                                                                                                                     

The differential equations can only be obtained for particular values of  and  .                                                                             

When 1  , equation (3) becomes;        

  
1

( ) ( )a af x f x


 
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                                      (4)

     ( ) ( ) 0a af x f x                                          (5) 

When 2  , equation (3) becomes;        
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When 3  , equation (3) becomes;        

  

2
2 3

( ) ( )c c

x
f x f x

x  

   
    

   

                          (8)



        
3 3 3( ) (3 2 ) ( ) 0c cxf x x f x                  (9) 

To obtain a simplified ordinary differential equation, differentiate equation (3);      
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The condition necessary for the existence of the equation is , , 0.x                                                                   

The following equations obtained from (3) are needed to simplify equation (10);    
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Substitute equations (11) and (13) into equation (10) to obtain;      
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The second order differential equation for the probability density function of the Weibull distribution is 

given by;          
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3.2 Quantile Function 

The Quantile function of the Weibull distribution is given as;  
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The QF is characterized by the shape parameter 0,   scale parameter 0  and the support 
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Differentiate equation (19);          
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Substitute equation (19) into equation (20);       
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Simplify equation (19) to obtain;         
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Substitute equation (22) into (21);                  
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The first order differential equation for the Quantile function of the Weibull distribution is given by
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Some special cases of equation (24) is considered;                                         

When 1  , equation (24) becomes;        
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When 2  , equation (24) becomes;        
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 3.3 Survival Function 

The survival function of the Weibull distribution is given as;    
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Differentiate equation (28);             

 

1

( ) e ( )

t
t

S t f t






 

  
 
  

     
 

                      (29) 

The condition necessary for the existence of the equation is , , 0.t                                                 
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Also, equation (29) can be simplify using equation (28).                                    
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The differential equations can only be obtained for particular values of  and  .                                                                             



When 1  , equation (32) becomes;        
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When 2  , equation (32) becomes;        
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When 3  , equation (32) becomes;        
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Using the results of the probability density function to obtain the one for the survival function;                

Modifying equation (3);           
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The differential equations can only be obtained for particular values of  and  .                                   

When 1  , equation (39) becomes;        
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

 
   

 
                                                (40)

 ( ) ( ) 0d dS t S t                                                    (41) 

When 2  , equation (39) becomes;        

 
1 2

( ) ( )e e

t
S t S t

t  

  
    

  
                                   (42)

 
2 2 2( ) (2 ) ( ) 0e etS t t S t                           (43) 

When 3  , equation (39) becomes;        

 

2
2 3

( ) ( )f f

t
S t S t

t  

   
    

   

                                   (44)

 
3 3 3( ) (3 2 ) ( ) 0f ftS t t S t                           (45)                         

Alternatively, using equations (31) and (32) on (39) yields a different ordinary differential equation                                   

         

 

1 1
1

( ) ( )
t t

S t S t
t

 
  

   

      
        

     

                    (46)   

 

1 1
1

( ) ( )
t t

S t S t
t

 
  

   

      
       

     

                                 (47)  

The differential equations can only be obtained for particular values of  and  .                                                                             

When 1  , equation (47) becomes;        



 
1 1

( ) ( )g gS t S t
 

 
    

 
                                                          (48)  

 
2 ( ) ( ) 0g gS t S t                                                                           (49)  

When 2  , equation (47) becomes;        

 
2 1 2

( ) ( )h h

t t
S t S t

t   

    
       

    
                                              (50)  

 
4 2 2( ) 2(2 ) ( ) 0h hS t t S t                                                   (51) 

When 3  , equation (47) becomes;        

 

2 2
3 2 3

( ) ( )i i

t t
S t S t

t   

     
       

     

                                 (52)

 
6 3 3( ) 3 (3 2 ) ( ) 0i iS t t t S t                                                   (53)                                                                                                                                                         

Furthermore, the third order ordinary differential equations can be obtained by the modification of 

equation (16);           

 
2 2 2 2( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( ) 0t S t S t t S t n n S t n tS t S t                             (54)

 

1

(1) eS











 
 
                                        (55)

 

12

2

( 1)
(1) eS







   



 
 
 

 
                                                 (56) 

3.4 Inverse Survival Function 

The inverse survival function of the Weibull distribution is given as;         

 

1

1
( ) lnQ p

p




  

   
  

                                    (57) 

The ISF is characterized by the shape parameter 0,   scale parameter 0  and the support 

0 1.p                                                                                                                                                                                   

Differentiate equation (57);          

 

1
1

1
( ) lnQ p

p p







  
     

  
                       (58)

 

1

1
ln

( )
1

ln

p
Q p

p
p







  
  

    
  
  

  

                       (59) 

The condition necessary for the existence of the equation is , 0,0 1.p                                                                        

Substitute equation (57) into equation (59);       

 
( )

( )
1

ln

Q p
Q p

p
p



  
  
  

  

                      (60) 



Simplify equation (57) to obtain;         

 
( ) 1

ln
Q p

p





  
   

   
                                    (61) 

Substitute equation (61) into (60);                  

 

1 ( )
( )

Q p
Q p

p

 





                                       (62)

 
1( ) ( ) 0pQ p Q p                             (63) 

The ordinary differential equations can be obtained for particular values of the parameters of equation 

(63). Some cases are considered.  

Table 1: First order ODEs of the ISF of Weibull Distribution for different parameters. 

      Ordinary Differential Equation 

1 1 ( ) 1 0pQ p     

1 2 ( ) 2 0pQ p    

2 1 2 ( ) ( ) 1 0pQ p Q p    

2 2 ( ) ( ) 2 0pQ p Q p    

 

3.5 Hazard Function 

The hazard function of the Weibull distribution is given as;     

 

1

( )
t

h t




 



 
  

 
                                    (64) 

The HF is characterized by the shape parameter 0,   scale parameter 0  and the support 

0.x                                                                                                                                                                                              

 
Differentiate equation (64);             

 

2 2

2

1 ( 1)
( )

t t
h t

 
   

    

 
     

      
    

          (65) 

The condition necessary for the existence of the equation is , , 0.t                                                                            

Substitute equation (64) into equation (65);                 

 
1

( ) ( )h t h t
t

 
                                                  (66) 

The first order ordinary differential equation for the Hazard function of the Weibull distribution is given 
as;          

 ( ) ( 1) ( ) 0th t h t                                       (67)

 (1)h





                                                  (68) 

Differentiate equation (66);                    

 

3

3

( 1)( 2)
( )

t
h t


  

 


   

   
 

                      (69) 

The condition necessary for the existence of the equation is , , 0.t                                                         

Two ordinary differential equations can be obtained from the simplification of equation (69),                                                                                                                                                                                                                                
 



ODE 1; Use equation (64) in (69);        

 
2

( 1)( 2)
( ) ( )h t h t

t

  
                                     (70)

 
2 ( ) ( 1)( 2) ( ) 0t h t h t                            (71)

                                                                                                                                                                             
ODE 2; Use equation (65) in (69);        

 
( 2)

( ) ( )h t h t
t

 
                                                  (72)

 ( ) ( 2) ( ) 0th t h t                                       (73)

 
( 1)

(1)h


 




                                                  (74) 

Differentiate equation (69);                    

 

4

4

( 1)( 2)( 3)
( )

t
h t


   

 


    

   
 

          (75) 

The condition necessary for the existence of the equation is , , 0.t                                         

 
Three ordinary differential equations can be obtained from the simplification of equation (75),                                                                                                                                                                                                                                
 
ODE 1; Use equation (64) in (75);        

 
3

( 1)( 2)( 3)
( ) ( )h t h t

t

    
                        (76)

 
3 ( ) ( 1)( 2)( 3) ( ) 0t h t h t                              (77)

       
ODE 2; Use equation (65) in (75);        

 
2

( 2)( 3)
( ) ( )h t h t

t

  
                                     (78)

 
2 ( ) ( 2)( 3) ( ) 0t h t h t                            (79)

       
ODE 3; Use equation (69) in (75);        

 
( 3)

( ) ( )h t h t
t

 
                                                  (80)

 ( ) ( 3) ( ) 0th t h t                                       (81)

 
( 1)( 2)

(1)h


  



 
                                     (82)

        
3.6 Reversed Hazard Function 

The reversed hazard function of the Weibull distribution is given as;   

 

1

e

( )

1 e

t

t

t

j t













 

  
 
 

 
 
 

 
 
 



                       (83) 

The RHF is characterized by the shape parameter 0,   scale parameter 0  and the support 

0.x                                                                                                                                                                                             

To obtain the first order ordinary differential equation for the reversed hazard function of the Weibull  



distribution, differentiate equation (83), to obtain;      

 

2 1 1

2

1

1

1
e e (1 e )

( ) ( )

e (1 e )

t t t

t t

t t t

j t j t
t

  

 

  

  



 

  

     



       
       

     

    
    

   

       
      
          

  
    

     (84)
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1 e
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1 e
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t
j t j t
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












   

 

  
 
 



 
 
 

 
 

           
  

 
 

         (85) 

The condition necessary for the existence of the equation is , , 0.t                                                  

 

1
1

( ) ( ) ( )
t

j t j t j t
t


 

 

   
        

                     (86)

                                                                                                                                                                                     
The differential equations can only be obtained for particular values of  and  .  Some cases are 

given in Table 2.                                                                                              
 
Table 2: First order ODEs of the ISF of Weibull Distribution for different parameters.    

      Ordinary Differential Equation 

1 1 2( ) ( ) ( ) 0j t j t j t      

1 2 22 ( ) ( ) 2 ( ) 0j t j t j t     

2 1 2 2( ) (2 1) ( ) ( ) 0tj t t j t tj t      

2 2 2 22 ( ) ( 2) ( ) 2 ( ) 0tj t t j t tj t      

 

To obtain the second order ordinary differential equation, differentiate equation (86);     

  

1 2

2

1 ( 1) 1
( ) ( ) ( ) ( ) ( )

t t
j t j t j t j t j t

t t

 
    

    

          
                        

        (87)         

The following equations obtained from (86) are needed to simplify equation (87);    

  

1
( ) 1

( )
( )

j t t
j t

j t t


 

 


   

   
 

                      (88)

  

1
1 ( )

( )
( )

t j t
j t

t j t


 

 


 

   
 

                      (89)

  

2
1 1 1 ( )

( )
( )

t j t
j t

t t j t


   

  


       

       
     

                                            (90) 

Substitute equations (88) and (90) into equation (87) to obtain;      

  

2

2

( ) ( 1) 1 1 ( )
( ) ( ) ( ) ( )

( ) ( )

j t j t
j t j t j t j t

j t t t t j t

        
         

   
                              (91)      

The differential equations can only be obtained for particular values of  and .                                        



3.7 Application 

Weibull distribution was used to fit the daily radiation data of Port Harcourt Nigeria. The data was 

obtained from Nigeria Meteorological Agency. It is for the month of September 2015. The data is 

presented; 

Table 3: Radiation Data of Port Harcourt Nigeria        

Date Radiation level Date Radiation level Date Radiation level 

9/1/2015 109.17 9/11/2015 164.41 9/21/2015 178.88 

9/2/2015 77.60 9/12/2015 127.58 9/22/2015 184.14 

9/3/2015 132.84 9/13/2015 86.81 9/23/2015 176.25 

9/4/2015 109.17 9/14/2015 118.38 9/24/2015 103.91 

9/5/2015 52.61 9/15/2015 114.43 9/25/2015 80.23 

9/6/2015 73.66 9/16/2015 90.75 9/26/2015 203.87 

9/7/2015 149.94 9/17/2015 81.55 9/27/2015 194.66 

9/8/2015 147.31 9/18/2015 119.69 9/28/2015 143.37 

9/9/2015 110.48 9/19/2015 170.99 9/29/2015 107.85 

9/10/2015 143.37 9/20/2015 155.20 9/30/2015 140.74 

                             

The descriptive statistics of the data are summarized in Table 4.                   

Table 4: Descriptive Statistics of the Radiation Data       

Mean median Standard 

Deviation 

Variance Skewness Kurtosis Range Minimum Maximum 

128.33 123.64 39.28 1542.76 0.117 -0.772 151.26 52.61 203.87 

                               

The data was fitted with the Weibull and the estimated values of the parameters are given in Table 5.

             

Table 5: Parameter Estimates of the Data Fit    

Parameter Estimated Value Standard Deviation 

Shape 3.707377054 0.531378272 

Scale 142.4835373 7.408452151 

                                 

The estimates are substituted in equations (3), (24), (33), (63), (67) and (86). The solutions are the 

PDF, QF, SF, ISF, HF and RHF of the data. For example, the case of hazard function was considered. 

Substitute 3.7  and 142.5   into equations (67) and (68) to obtain;    

  ( ) 2.7 ( ) 0th t h t                                                    (92)

      
3.7

3.7
(1) 0.00000004

142.5
h               (93) 

The solution gives the hazard function of the Weibull distribution.     

             

    



 

4. CONCLUSION 

The ODEs of the probability functions whose solutions are the respective probability functions of the 

Weibull distribution have been obtained. This result has shown that the ODE is not limited to the PDF 

but other probability functions. The usefulness of the ODEs in fitting is still vague and need further 

exploration. The research is crucial in ecological studies as the study of nature of the studied 

distribution can be extended to the behavior of the ODEs that define them. The parameters determine 

not only the distribution but also the nature of the ODE. Finally the results are similar to the series 

obtained by Okagbue et al.,( 2017 a, b, c, d, e, f, g, h, I, j, k, l, m, n, o). In addition some methods of 

solutions to the various ODE may be explored such as Anake et al, (2012 a, b, c, 2013, 2015). 

  

5. REFERENCES 

Adepoju, K. A., Shittu, O. I., Tijani I. A., 2013, The Statistical Properties of the Exponentiated 

Generalized Weibull Distribution with Applications. Proc. Annual the Confe. of the Nig. Stat. 136- 143.                                                  

Akaike, H., 1998, Information theory and an extension of the maximum likelihood principle. In 

Selected Papers of Hirotugu Akaike (pp. 199-213). Springer New York.    

Akinci, T.C., Seker, S., Guseinoviene, E., Nayir, A., 2013, Statistical analysis and Hurst parameter 

estimation for wind speed in Kirklareli area of Turkey. 8th Int. Conf. Exhibition on Ecological Vehicles 

and Renewable Energies, EVER. Article number 6521592. 

Al-Saidy, O., Samawi, H.M., Al-Saleh, M.F., 2005, Inference on overlap coefficients under the Weibull 

distribution: Equal shape parameter. ESAIM – Prob. Stat. 9, 206-219. 

Anake, T. A., Awoyemi, D. O., Adesanya, A. A., 2012, A one step method for the solution of general 

second order ordinary differential equations. International Journal of science and Technology, 2(4), 

159-163. 

Anake, T. A., Awoyemi, D. O., Adesanya, A. O., 2012, One-step implicit hybrid block method for the 

direct solution of general second order ordinary differential equations. IAENG International Journal of 

Applied Mathematics, 42(4), 224-228. 

Anake, T. A., Awoyemi, D. O., Adesanya, A. A., Famewo, M. M., 2012, Solving general second order 

ordinary differential equations by a one-step hybrid collocation method. International Journal of 

Science and Technology, 2(4), 164-168. 

Anake, T. A., Adesanya, A. O., Oghonyon, J. G., Agarana, M. C., 2013, Block algorithm for general 

third order ordinary differential equation. Icastor Journal of Mathematical Sciences, 7(2), 127-136. 

 



Anake, T. A., Bishop, S. A., Agboola, O. O., 2015, On a hybrid numerical algorithm for the solutions of 

higher order ordinary differential equations. TWMS J. Pure Appl. Math., 6(2). 

Aryal, G. R., Tsokos, C. P., 2011, Transmuted Weibull distribution: A generalization of theWeibull 

probability distribution. Euro. J. Pure Appl. Math, 4, 89-102.                    

Atencia, M., Joya, G., 2011, Statistical properties of the „Hopfield estimator‟ of dynamical systems. 

ESANN 2011, 19
th 

European Symposium on Artificial Neural Networks, Computational Intelligence 

and Machine Learning, 47-52.                       

Baek, S., Hwang, A., Kim, H., Lee, H., Lee, J.-H., 2017, Temperature-dependent development and 

oviposition models of Halyomorpha halys (Hemiptera: Pentatomidae). J. Asia-Pacific Entomology. 20, 

367-375. 

Bai, J., Wang, J., Xiao, H., Ju, H., Liu, Y., Gao, Z., 2013, Weibull distribution for modeling drying of 

grapes and its application. Transac. Chinese Soc. Agric. Engine. 29, 278-285. 

Balakrishnan, N., Lai, C. D., 2009, Continuous Bivariate Distributions, 2nd edition, Springer New York, 

London.                                                                                                                             

Banks, H. T., Bortz, D. M., Holte, S. E., 2003, Incorporation of variability into the modeling of viral 

delays in HIV infection dynamics. Math. Biosciences. 183, 63-91. 

Barreto-Souza, W., de Morais, A. L., Cordeiro, G. M., 2011, The Weibull-geometric distribution. J. 

Stat. Comput. Simul. 81, 645-657.           

Bonou, W., Glèlè Kakaï, R., Assogbadjo, A.E., Fonton, H.N., Sinsin, B., 2009, Characterisation of 

Afzelia africana Sm. habitat in the Lama forest reserve of Benin. Forest Ecol. Magt. 258, 1084-1092. 

Calderhead, B., Girolami, M., 2011, Statistical analysis of nonlinear dynamical systems using 

differential geometric sampling techniques. Interface Focus. 1, 821-835.      

Carlson, C.A., Burkhart, H.E., Allen, H.L., Fox, T.R., 2008, Absolute and relative changes in tree 

growth rates and changes to the stand diameter distribution of Pinus taeda as a result of midrotation 

fertilizer applications. Canadian J. Forest Res. 38, 2063-2071. 

Castellares, F., Lemonte, A. J., 2016, On the Gamma Dual Weibull Model. Amer. J. Math. Magt. Sci. 

35, 124-132.                                                                                                                                                                                                                                                                                                                                                                                      

Chan, M.-H., Chen, J.-H., Lin, H.C., Fujimoto, N., 2011, Tree ring analysis for growth pattern and age 

structure of the subtrophic broad-leaved forest in Taiwan. J. Faculty Agric. Kyushu Univer. 56, 317-

326. 



Cohen, A. C., 1965, Maximum likelihood estimation in the Weibull distribution based on complete and 

on censored samples. Technometrics. 7, 579-588.                                          

Cordeiro, G. M., Ortega, E.M.M., Silva, G.O., 2014, The Kumaraswamy modified Weibull distribution: 

theory and applications. J. Stat. Comput. Simul. 84, 1387-1411.               

Dasgupta, R. 2015, Longitudinal growth of elephant foot yam and some characterisation theorems.  

Springer Proc. Math. Stat. 132, 259-285. 

Dey, S., Dey, T., Anis, M. Z., 2015, Weighted Weibull distribution: Properties and estimation. J. Stat. 

Theo. Pract. 9, 250-265.           

Elbatal, I., Mansour, M. M., Ahsanullah, M., 2016, The Additive Weibull-Geometric Distribution: 

Theory and Applications. J. Stat. Theo. Appl. 15, 125-141.           

Elderton, W. P., 1906, Frequency curves and correlation. Charles and Edwin Layton. London.                                  

Eliopoulos, P.A., Stathas, G.J., Bouras, S.L., 2005,  Effects and interactions of temperature, host 

deprivation and adult feeding on the longevity of the parasitoid Venturia canescens (Hymenoptera: 

Ichneumonidae). Euro. J. Entomology. 102, 181-187. 

Enszer, J. A., Lin, Y., Ferson, S., Corliss, G. F., Stadtherr, M. A., 2011, Probability bounds for 

nonlinear dynamic process, AIChE Journal. 57, 404-422.    

Fargo, W.S., Wagner, T.L., Coulson, R.N., Cover, J.D., McAudle, T., Schowalter, T.D., 1982, 

Probability functions for components of the Dendroctonus frontalis-Host tree population system and 

their potential use with population models. Res. Popul. Ecology. 24, 123-131. 

Forrester, D.I., Elms, S.R., Baker, T.G., 2013, Tree growth-competition relationships in thinned 

Eucalyptus plantations vary with stand structure and site quality. Euro. J. Forest Res. 132, 241-252. 

Gao, D., Perry, G., 2016, Species–area relationships and additive partitioning of diversity of native 

and nonnative herpetofauna of the West Indies. Ecology and Evolution. 6, 7742-7762. 

Ghitany, M.E., Al-Jarallah, R.A., Balakrishnan, N., 2011, On the existence and uniqueness of the 

MLEs of the parameters of a general class of exponentiated distributions. Statistics. 47, 37-41. 

Guseinoviene, E., Senulis, A., Akinci, T.C., Seker, S., 2014, Statistical and Continuous Wavelet 

Analysis of wind speed data in Mardin-Turkey. 9th Int.l Conf. on Ecological Vehicles and Renew. 

Energies, EVER. Article number 6844073. 

Hagiwara, Y., 1974, Probability of earthquake occurrence as obtained from a Weibull distribution 

analysis of crustal strain. Tectonophysics. 23, 313-318. 

Hall, A. J., Gandar, P. W., 1996, Stochastic models for fruit growth. Acta Horticulture. 416, 113-119. 



Hallinan, A. J., 1993, A review of the Weibull distribution. J. Quality Tech. 25, 85-85.          

He, D., Hong, W., Hu, Haiqing, Wu, C., 2004, Patch size distribution pattern and its hierarchical effect 

of main landscape types in the Wuyishan scenery district. Chinese J. Appl. Ecology. 15, 21-25. 

 Hirose, H., 2011, Parameter estimation for the truncated Weibull model using the ordinary differential 

equation. Proceedings-1
st
 ACIS/JNU International Conference on Computers, Networks, Systems and 

Industrial Engineering. CNSI, 396-399. 

Hirose, H., 2012, Estimation of number of failures in the Weibull model using the ordinary differential 

equation. Euro. J. Operat. Res. 223, 722-731.                              

Hogg, D.B., Nordheim, E.V., 1983, Age-specific survivorship analysis of Heliothis spp. Populations on 

cotton. Res. Popul. Ecology. 25, 280-297. 

Huffman, D.W., Crouse, J.E., Walker Chancellor, W., Fulé, P.Z., 2012, Influence of time since fire on 

pinyon-juniper woodland structure. Forest Ecol. Magt. 274, 29-37. 

Jankowski, M.D., Williams, C.J., Fair, J.M., Owen, J.C.,  2013, Birds Shed RNA-Viruses According to 

the Pareto Principle. PLoS ONE. 8, Article number e72611. 

Johnson N. L., Kotz, S., Balakrishnan, N., 1994, Continuous Univariate Distributions. Wiley New York. 

ISBN: 0-471-58495-9.                                                                                                                                                           

Johnson N. L., Kotz, S., Balakrishnan, N., 1995, Continuous Univariate Distributions, Volume 2. 2nd 

edition, Wiley.     

Kapur, A., Keoleian, G., Kendall, A., Kesler, S.E., 2008,  Dynamic modeling of in-use cement stocks in 

the United States. J. Indust. Ecology. 12, 539-556. 

Knopoff, D., 2013, On the modeling of migration phenomena on small networks. Math. Mod. Meth. 

Appl. Sci. 23, 541-563.           

Lee, C., Famoye, F., Olumolade, O., 2007, Beta-Weibull distribution: some properties and 

applications to censored data. J. Modern Appl. Stat. Meth. 6, Article: 17.                                                                                                                                                                                                                                                                                                                                                                                                       

Legge, A.H., Krupa, S.V., 1989,  Air quality at a high elevation, remote site in Western Canada. 

Proceedings - 82nd A&WMA Annual Meeting; Anaheim, CA, USA; Code 13687, Proceedings - 

A&WMA Annual Meeting, 8, 17. 

Lemon, G. H., 1975, Maximum likelihood estimation for the three parameter Weibull distribution based 

on censored samples. Technometrics. 17, 247-254.    

Li, W.-C. Wang, S.-D., Zhong, Z.-K., Sheng, H.-Y., Zhou, Y., 2011, Growth rhythm and indiv-idual 

models of wine bamboo plantation, Oxytenanthera braunii. Forest Research. 24, 713-719. 



Lieblein, J. 1955, On moments of order statistics from the Weibull distribution. Ann. Math. Statist.  26, 

330-333.                                                                                 

Littell, R. C., Mc Clave, J. T., Offen, W. W., 1979, Goodness-of-fit tests for the two parameter Weibull 

distribution. Comm. Stat. Simul. Comput. 8, 257-269.           

Luo, Y.-J., Yang, Z.-G., Wang, D., Xie, D.-Y., Ding, W., 2015, Relative fitness of propargite-resistant 

strain of Tetranychus cinnabarinus (Boisduval)(Acari: Tetranychidae). Chinese J. Ecology. 34, 2827-

2832. 

MacKenzie, R.A., Kaster, J.L., Klump, J.V., 2004, The ecological patterns of benthic invertebrates in a 

Great Lakes coastal wetland. J. Great Lakes Res. 30, 58-69. 

Mafart, P., Couvert, O., Gaillard, S., Leguérinel, I., 2002, On calculating sterility in thermal 

preservation methods: application of the Weibull frequency distribution model. Int. J. Food Microbio. 

72, 107-113. 

 Marabi, A., Livings, S., Jacobson, M., Saguy, I. S., 2003, Normalized Weibull distribution for modeling 

rehydration of food particulates. Euro. Food Res. Technol. 217, 311-318.        

McKenzie, D., Hessl, A.E., Kellogg, L.-K.B., 2006, Using neutral models to identify constraints on low-

severity fire regimes. Landscape Ecology, 21, 139-152. 

Menon, M. V., 1963, Estimation of the shape and scale parameters of the Weibull distribution. 

Technometrics. 5, 175-182.        

Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., Jalilvand, M., 2016, Assessing different 

parameters estimation methods of Weibull distribution to compute wind power density. Energy 

Convers. Magt.  108, 322-335.                                                    

Moritz, M.A., Moody, T.J., Miles, L.J., Smith, M.M., Valpine, P., 2009, The fire frequency analysis 

branch of the pyrostatistics tree: Sampling decisions and censoring in fire interval data, Environ. Ecol. 

Stat. 16, 271-289. 

Mudholkar, G. S., Srivastava, D. K., Kollia, G. D., 1996, A generalization of the Weibull distribution 

with application to the analysis of survival data. J. Amer. Stat. Assoc.  91, 1575-1583.      

Nadarajah, S., Cordeiro, G. M., Ortega, E. M., 2013, The exponentiated Weibull distribution: a survey. 

Stat. Papers. 54, 839-877.                                                                     

Nakagawa, T., Osaki, S., 1975, The discrete Weibull distribution. IEEE Transac. Reliability. 24, 300-

301.                                                                                                                                                                                                                                                                                                                         



Nanos, N., Montero, G., 2002, Spatial prediction of diameter distribution models. Forest Ecol.  Magt. 

161, 147-158. 

Nassar, M. M., Eissa, F. H., 2003, On the exponentiated Weibull distribution. Comm. Stat. Theo. 

Meth. 32, 1317-1336.                                                                                                                                                                                                                                                                    

Navarro-Cerrillo, R.M., Olave, F.,Moreno, F., de Miguel, S., Clemente, M., 2014, Stand structure and 

regeneration of harvested Araucaria araucana-Nothofagus stands in central Chile, Southern Forests. 

76, 11-19. 

Neeff, T., Dutra, L.V., Dos Santos, J.R., Da Costa Freitas, C., Araujo, L.S. 2003, Tropical forest stand 

table modelling from SAR data. Forest Ecol. Magt. 186, 159-170. 

Newman, M.C., Aplin, M.S., 1992, Enhancing toxicity data interpretation and prediction of ecological 

risk with survival time modeling: an illustration using sodium chloride toxicity to mosquitofish 

(Gambusia holbrooki). Aquatic Toxicology. 23, 85-96. 

Oguntunde, P. E., Balogun, O. S., Okagbue, H. I., Bishop, S. A., 2015, The Weibull-Exponential 

Distribution: Its Properties and Applications. J. Appl. Sci. 15, 1305-1311.             

Okagbue, H.I, Oguntunde, P.E., Opanuga, A.A., Owoloko, E.A. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Fréchet Distribution,” Lecture Notes in 

Engineering and Computer Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 186-191.  

Okagbue, H.I., Oguntunde, P.E., Ugwoke, P.O., Opanuga, A.A. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Exponentiated Generalized Exponential 

Distribution,” Lecture Notes in Engineering and Computer Science: Proceedings of The World 

Congress on Engineering and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 192-197.  

Okagbue, H.I., Opanuga, A.A., Owoloko, E.A., Adamu, M.O. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Cauchy, Standard Cauchy and Log-Cauchy 

Distributions,” Lecture Notes in Engineering and Computer Science: Proceedings of The World 

Congress on Engineering and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 198-204.  

Okagbue, H.I., Bishop, S.A., Opanuga, A.A., Adamu, M.O. “Classes of Ordinary Differential Equations 

Obtained for the Probability Functions of Burr XII and Pareto Distributions,” Lecture Notes in 

Engineering and Computer Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 399-404.  



Okagbue, H.I., Adamu, M.O., Owoloko, E.A., Opanuga, E.A. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Gompertz and Gamma Gompertz Distributions,” 

Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on 

Engineering and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 405-411. 

Okagbue, H.I., Adamu, M.O., Anake, T.A. “Quantile Approximation of the Chi-square Distribution 

using the Quantile Mechanics,” Lecture Notes in Engineering and Computer Science: Proceedings of 

The World Congress on Engineering and Computer Science 2017, 25-27 October, 2017, San 

Francisco, U.S.A., pp 477-483.  

Okagbue, H.I., Adamu, M.O., Opanuga, A.A., Oghonyon, J.G. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of 3-Parameter Weibull Distribution,” Lecture Notes 

in Engineering and Computer Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 539-545.  

Okagbue, H.I., Opanuga, A.A., Owoloko, E.A., Adamu, M.O. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Exponentiated Fréchet Distribution,” Lecture 

Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 

and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 546-551.  

Okagbue, H.I., Adamu, M.O., Owoloko, E.A., Bishop, S.A. “Classes of Ordinary Differential Equations 

Obtained for the Probability Functions of Half-Cauchy and Power Cauchy  Distributions,” Lecture 

Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 

and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 552-558.  

Okagbue, H.I., Adamu, M.O., Anake, T.A. “Solutions of Chi-square Quantile Differential Equation,” 

Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on 

Engineering and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 813-818.  

Okagbue, H.I., Oguntunde, P.E., Opanuga, A.A., Owoloko, E.A. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Exponential and Truncated Exponential  

Distributions,” Lecture Notes in Engineering and Computer Science: Proceedings of The World 

Congress on Engineering and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 858-864.  

Okagbue, H.I., Agboola, O.O., Ugwoke, P.O., Opanuga, A.A. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Exponentiated Pareto  Distribution,” Lecture Notes 

in Engineering and Computer Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 865-870.  

Okagbue, H.I., Agboola, O.O., Opanuga, A.A., Oghonyon, J.G. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Gumbel Distribution,” Lecture Notes in 



Engineering and Computer Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 871-875.  

Okagbue, H.I., Odetunmibi, O.A., Opanuga, A.A., Oguntunde, P.E. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Half-Normal Distribution,” Lecture Notes in 

Engineering and Computer Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 876-882.  

Okagbue, H.I., Adamu, M.O., Owoloko, E.A., Suleiman, E.A. “Classes of Ordinary Differential 

Equations Obtained for the Probability Functions of Harris Extended Exponential Distribution,” Lecture 

Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 

and Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 883-888.  

Papadimitriou, Katafygiotis, L. S., Beck, J. L., 1995, Approximate analysis of response variability of 

uncertain linear systems. Probab. Engineering Mech. 10, 251-264. 

Percontini, A., Blas, B., Cordeiro, G. M., 2013, The beta Weibull Poisson distribution. Chilean J. Stat. 

4, 3-26.                                                                                  

Pham, H., Lai, C. D., 2007, On recent generalizations of the Weibull distribution. IEEE Transac. 

Reliability, 56, 454-458.                                                                                    

Pinder, J. E., Wiener, J. G., Smith, M. H., 1978, The Weibull distribution: a new method of 

summarizing survivorship data. Ecology, 59, 175-179.     

Pogány, T. K., Saboor, A., Provost, S., 2015, The Marshall–Olkin exponential Weibull distribution. 

Hacettepe J. Math. Stat. 14, 1579-1594.          

Razali, A. M., Al-Wakeel, A. A., 2013,  Mixture Weibull distributions for fitting failure times data. Appl. 

Math. Comput. 219, 11358-11364.                                     

 Reed, W. J., Hughes, B. D., 2002, On the size distribution of live genera. J. Theo. Biology. 217, 125-

135. 

Rinne H.,2010, Location scale Distributions, Linear Estimation and probability plotting using MATLA 

Rogeau, M.-P., Armstrong, G.W., 2017, Quantifying the effect of elevation and aspect on fire return 

intervals in the Canadian Rocky Mountains. Forest Ecol. Magt. 384, 248-261. 

Roylance, B. J., Pocock, G., 1983, Wear studies through particle size distribution I: Application of the 

Weibull distribution to ferrography. Wear, 90, 113-136. 

Saboor, A., Pogany, T. K., 2016, Marshall-Olkin gamma-Weibull distribution with applications. Comm. 

Stat. Theo. Meth. 45, 1550-1563.                



Saboor, A., Kamal, M., Ahmad, M., 2015, The transmuted exponential–Weibull distribution with 

applications. Pak. J. Stat. 31, 229-250.                                                                                                                                                                                                                          

Sarkkola, S., Alenius, V., Hökkä, H., Laiho, R., Päivänen, J., Penttilä, T., 2003, Changes in structural 

inequality in Norway spruce stands on peatland sites after water-level drawdown. Canadian J. Forest 

Res. 33, 222-231. 

Sarkkola, S., Hökkä, H., Laiho, R., Päivänen, J., Penttilä, T., 2005, Stand structural dynamics on 

drained peatlands dominated by Scots pine. Forest Ecol. Magt. 206, 135-152. 

Sedaghat, A. , Gaith, M., Khanafer, K., Bani-Hani, E., 2016, Rated wind speed reality or myth for 

optimization in design of wind turbines. 11th Int. Conf. on Ecol. Vehicles and Renew. Energies, EVER. 

Article number 7476402. 

Seguro, J. V., Lambert, T. W., 2000, Modern estimation of the parameters of the Weibull wind speed 

distribution for wind energy analysis. J. Wind Enginee. Indust. Aerody. 85, 75-84.     

Selim, M. A., Badr, A. M., 2016, Kumaraswamy Generalized Power Weibull Distribution. Math. Theo. 

Model., 6, 110-124.                                                                                                   

Sharif, M. N., Islam, M. N., 1980, The Weibull distribution as a general model for forecasting 

technological change. Technol. Forecast. Social Change. 18, 247-256.      

Shittu, O. I., Adepoju, K. A., 2014,  On the Exponentiated Weibull Distribution for Modeling Wind 

Speed in South Western Nigeria. J. Modern Appl. Stat. Meth.. 13, Article: 28.       

Shotorban, B., 2010, Dynamic least-square kernel density modeling of Fokker-Planck equations with 

application to neural population. Physical Review E-Stat. Nonl. Soft Matt. Phys. 81, Article number: 

046706. 

Singh, V. P., 1987, On application of the Weibull distribution in hydrology. Water Resource Magt. 1, 

33-43. 

Singla, N., Jain, K., Sharma, S. K., 2012, The beta generalized Weibull distribution: properties and 

applications. Relia. Engine. Syst. Safety, 102, 5-15.                                                                                                                                                                   

Stauffer, H. B., 1979, A derivation for the Weibull distribution.  J. Theo. Biology. 81, 55-63. 

Steinsaltz, D., Evans, S. N., Wachter, K. W., 2005, A generalized model of mutation-selection balance 

applications to aging. Adv. Appl. Math. 35, 16-33.      

Studds, C.E., Mcfarland, K.P., Aubry, Y., Rimmer, C.C., Hobson, K.A., Marra, P.P., Wassenaar, L.I., 

2012, Stable-hydrogen isotope measures of natal dispersal reflect observed population declines in a 

threatened migratory songbird. Divers. Distribut. 18, 919-930. 



Subedi, S., Fox, T.R., 2016,  Modeling repeated fertilizer response and one-time midrotation fertilizer 

response in loblolly pine plantations using FR in the 3-PG process model. Forest Ecol. Magt. 380, 90-

99. 

Tadikamalla, P. R., 1978, Applications of the Weibull distribution in inventory control. J. Operational 

Res. Soc. 29, 77-83.  

Tahir, M. H., Cordeiro, G. M., Alzaatreh, A., Mansoor, M., Zubair, M. (2016 b). A New Weibull–Pareto 

Distribution: Properties and Applications. Comm. Stat. Simul. Comput. 45, 3548-3567.                                                         

Tahir, M. H., Cordeiro, G. M., Mansoor, M., Zubair, M., Alizadeh, M., 2016 c, The Weibull–Dagum 

distribution: Properties and applications. Comm. Stat. Theo. Meth. 45, 7376-7398.                                                                                                

Tahir, M. H., Zubair, M., Mansoor, M., Cordeiro, G. M., Alizadeh, M., Hamedani, G. G., 2016 d, A new 

Weibull-G family of distributions. Hacettepe J. Math. Stat. 45, 629-647.     

Tahir, M., Alizadeh, M., Mansoor, M., Cordeiro, G. M., Zubair, M., 2016 a, The Weibull-power function 

distribution with applications. Hacettepe J. Math. Stat. 45, 245-265.                                                                                                                               

Tahir, M.H., Cordeiro, G.M., Mansoor, M., Zubair, M., 2015, The Weibull-Lomax distribution: 

properties and applications. Hacettepe J. Math. Stat. 44, 455-474.      

Taubert, F., Hartig, F., Dobner, H.-J., Huth, A., 2013, On the Challenge of Fitting Tree Size 

Distributions in Ecology. PLoS ONE, 8, Article number e58036.  

Thoman, D. R., Bain, L. J., Antle, C. E., 1969, Inferences on the parameters of the Weibull 

distribution. Technometrics. 11, 445-460.                                                                                                                                                                     

Tjørve, E., 2003, Shapes and functions of species-area curves: A review of possible models. J. 

Biogeography. 30, 827-835. 

Wagner, T. L., Wu, H. I., Sharpe, P. J., Coulson, R. N., 1984, Modeling distributions of insect 

development time: a literature review and application of the Weibull function. Ann. Entomol. Soc. 

Amer. 77, 475-483. 

Wang, D.-H. , Hsieh, H.-C., Tang, S.-C., Chung, C.-H., 2010, Stand growth simulation of a Taiwania 

plantation in the Liouguei area. Taiwan J. Forest Sci. 25, 155-169. 

Wong, T. F., Wong, R. H., Chau, K. T., Tang, C. A., 2006,  Microcrack statistics, Weibull distribution 

and micromechanical modeling of compressive failure in rock. Mechanics of Materials. 38, 664-681. 

Yang, J., He, H.S., Gustafson, E.J., 2004, A hierarchical fire frequency model to simulate temporal 

patterns of fire regimes in LANDIS. Ecolog. Modell.  180, 119-133. 



Zabel, R.W., Burke, B.J., Moser, M.L., Caudill, C.C., 2014, Modeling temporal phenomena in variable 

environments with parametric models: AN application to migrating salmon. Ecolog. Model.  273, 23-

30. 

 

 


