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Abstract. The effect of precursor type and concentration in activating different sulfated 

zirconia catalysts and their activities for transesterification was investigated. Double 

sulfation ensured sulfate incorporation while subsequent drying and calcination at 600°C 

for 5 h stabilized the surface structure of the catalysts. XRD and BET analyses elucidated 

the structural and textural properties of the catalysts. Higher concentration of combined 

precursors and concentration of sulfuric acid in SZ increases the surface area of the 

materials. The results showed that minor amounts of precursor enhanced catalytic activity 

of the materials while sulfate content determines the amounts of Brönsted and Lewis 

acidities. The synergetic effect from a combination of precursors gave more 95% 

conversion from the simultaneous esterification of free fatty acids (FFA) and 

transesterification of triglycerides (TG). 
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1 Introduction  
  

The potency of public concern in the 21st century forces decision makers to enact policies 

not primarily based on science and technology. Consequently, it is necessary to devise 

catalytic processes with ca. 100% yields. The high activity of sulfated zirconia (SZ) 

attracted substantial attention for converting triglycerides (TGs) into biodiesel at 

moderate to high temperatures. It is instructive to highlight that high activity of SZ is a 

function of their strong acidity. However, despite numerous encouraging results, some 

aspects of SZ catalytic reactivity and physicochemical properties remain debatable. This 

is plausible because of the sensitivity of the material to the activation conditions and 

preparation method [1]. Moreover, the scarcity of licensed processes is an indication that 

solid acid catalysis needs extensive experimentation. These will help in establishing the 

numerous potentials of these catalysts as well as ensuring biodiesel prominence. Despite 

these challenges, last century witnessed catalysis as the major backbone for most 

industrial processes such as petrochemistry (especially, petroleum catalytic refining) and 

bulk chemistry. However, recent environmental and socioeconomical challenges have 

brought about new demands which require novel catalytic solutions [2]. Inherent with 

these new challenges are the potentials for greater efficiency and sustainability of such 

systems [3]. Moreover, the searches for newer solutions have led experts to explore in 

details, the attributes of different materials, systems and devices [4]. One key task is in 

achieving phase-homogeneous solids with uniform morphological and chemical 

properties. This challenge is a fundamental prerequisite to any rational catalyst design. 

This study therefore, aims at exploring the effect of slight changes to preparatory method 

in developing SZ catalysts. It highlights how preparation method affects catalytic 

performance of the catalyst within prevailing reaction conditions. 
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2 Research Methodology 
 

Sigma-Aldrich supplied all the reagents for this study except where stated otherwise. 

Required amount of ZrOCl2.8H2O was dissolved in distilled water and stirred for 5 min to 

0.34M concentration. Adding urea in drop-wise manner to a pH of 2 precipitated the 

active species from the solution. Adding 0.5M (NH4)2SO4 produced a gel-like acidic 

solution. This was aged for 1 to 14 days in closed polyethylene (PE) bottles at 90°C. 

After cooling to room temperature, the solution was filtered. The filtrate was washed with 

excess distilled water (6 times with 100 ml each time). Drying of the solid was for 20 h in 

open air inside a fume cupboard and at 90°C for 4 h before calcining in air at 550°C for 5 

h. This sample was labeled 007(F1). To obtain strong acid sites, resulfation step was 

performed on the remaining samples. The solid was kneaded into powder and mixed with 

0.5M H2SO4 for 2 h. The solution was filtered through fritted glass, dried at 130°C for 16 

h and calcined at 600°C for 5 h  

 
The above procedure was repeated for Sample 008(F2) except that required amount of 

ZrOCl2.8H2O was dissolved in distilled before adding urea to pH value of 2 and mixing 

with required amount of ZrCl4. Similarly,  the procedure  was repeated for sample 009(F3) 

except that required amount of ZrO(NO3).xH2O was dissolved in 400 ml distilled water 

before adding urea to pH value of 1.25 and mixing with required amount of ZrO2 and 

Al(NO3).9H2O. The solution was stirred at 210 rpm under heating at 50°C for 2 h. 

Ammonia solution was added and stirred for 40 min before aging at room temperature for 

10 days. The solid was filtered and dried in fume cupboard before drying at 90°C for 24h 

and calcined at 550°C for 4 h. The transesterification reaction was conducted in a 1 L 

high temperature-high pressure stainless steel Lab-Autoclave batch reactor (AMAR 

Equipment, India.). Commercial palm oil was obtained from commercial outlet in Kuala 

Lumpur. Preliminary experiments were done to ascertain the influence of reaction 

temperature, methanol/oil molar ratio and reaction time on TG conversion (data not 

shown). Methanol-to-oil mole ratio of 5 and 2 wt% catalyst were employed for 1 to 2 h 

reaction time at 180 to 220 °C. 

 
3 Main Results 

 

3.1 Catalyst Characterization 
 

Analyzing isolated samples of catalyst precursors or intermediates facilitates 

circumventing the high complexities of catalytic systems. It provide important 

information regarding the reaction mechanism and structure/activity relationships of the 

catalyst. This ex situ approach also enables the researcher to work with simplified 

systems under pre-defined conditions such as with simplified systems or polished crystals 

under ultra-high vacuum. 

 

3.1.1 X-ray Diffraction Analysis 
 

XRD analysis was performed with PAN analytical X’pert Empyrean X-ray diffractometer 

with CuKα radiation at 40 kV and 40 mA performed the XRD analysis. The XRD 

diffractograms of synthesized SZ catalysts revealed a tetragonal–monoclinic phase 

transition (Figure 1). The XRD patterns also show the significant impact of calcination 

temperature and precursor concentration on the crystal phase and crystallite size. It is also 
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evident the characteristic peak areas of tetragonal is more prominent than that of the 

monoclinic phases. In addition, the intensity of the peaks reflects both adsorption and 

amount of phase in the synthesized materials. 

 
Figure 1 X-ray diffraction patterns for 007F1, 008F2 and 009F3. 

 
3.1.2 BET analysis 
 

Brunauer–Emmett–Teller (BET) analysis was conducted with Quantachrome Nova 1200. 

Table 1 presents the textural and percentage conversions obtained from the three 

mesoporous SZ catalysts. The difference in chemical composition of the catalytic 

materials plausibly explains the significant variations in textural and catalytic activities. 

Thus, for instance, the SBET of 009F3 was 15.0543 m2/g (95.83% conversion) while 007F1 

had 7.6917 SBET value and a lower conversion of 51.57%. However, the pore size 

distribution (2 < dp < 50 nm) of all the synthesized catalysts confirms mesoporous 

structure which permits the TG molecule access to the active sites within the materials. 

 
Table 1 Textural surface area of synthesized sulfated zirconia 
 

Sample SSAa  (cm2/g)  Ext. SAb (cm2/g) Pore vol. (cm3/g) Pore sizea (nm) Convn 

(%) 

007F1 7.6917 6.6926 0.033578 21.4448 51.57 

008F2 41.2160 39.8731 0.070824 6.8324 73.45 

009F3 15.0543 14.3529 0.038344 9.6520 95.83 
a BET specific surface area and pore size 
b t-plot external surface area 
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Figure 2 Some selected conversions obtained from (a) 007F1, (b) 008F2 and (c) 009F3 

 

4 Discussion of Results 
 

Usually tetragonal phase transition occurs at above 1170 °C. However, according to [5] 

SZ precipitation preparation method produces monoclinic–tetragonal phase 

transformation of zirconia at lower temperature [6]. Therefore, the low temperature 

employed during double sulfation in this study facilitated the transition of monoclinic 

phase from the tetragonal phase which retards crystallization of zirconia support [7,8]. 

Furthermore, the lower surface energy of the tetragonal phase compared to monoclinic 

phase also ensures transforming of the metastable tetragonal phase into the monoclinic 

phase [6]. All the XRD patterns of 007F1, 008F2 and 009F3 displayed presence of 

mixture of monoclinic and tetragonal phases (Figure 1). Sample 007F1 displayed zirconia 

predominantly in monoclinic phase with little tetragonal phase with respect to intensity. 

The monoclinic phase with the highest intensity is at 2𝜃 = 28.16 (61.21%) while that of 

the tetragonal is at 2𝜃 = 50.09 (13.27%).  In contrast, sample 008F2 exhibits zirconia 

predominantly in tetragonal phase with little monoclinic phase with respect to intensity. 

The tetragonal phase with the highest intensity is at 2𝜃 = 30.19 (81.74%) while that of the 

monoclinic is at 2𝜃 = 28.17 (64.43%). The samples exhibited good performances when 

evaluated for transesterification of palm oil (Figure 2). Sample 008F2 displayed higher 

activity compared to 007F1. We ascribed this to the dominant presence of tetragonal 

phase as shown by the XRD patterns. This indicates that monoclinic phase does not favor 

transesterification of palm oil as much as tetragonal phase of the evaluated materials. This 

is in consonance with the report of Ramu et al [9].  

 

It is evident from Figures 1 and 2 that slight modification in catalyst preparation 

condition changes the morphology of the material which yields different catalytic 

activity. This morphological change could be favorable or detrimental to the catalytic 

activity of the catalyst. The domain sizes and lattice strains (the contribution from 

crystalline sizes and strains) displayed by the peaks were affected due to such 

modifications. The peaks also reveal the active metal concentrations in the different 

modified catalysts. The intensity of monoclinic phase ZrO2 (Baddeleyite) appeared in 

XRD patterns of 007F1 and 008F2 but became prominent in 009F3 (Figure 1). Essential 

requirements for zirconia or ZrO2 mixed oxides heterogeneous catalysis include good 

system of channeled pores for diffusion and enhanced textural properties. Interestingly, 
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the XRD shoulder with the maximum intensity is centered at 27.78. This is situated at the 

same peak position which graphically exhibits Bragg’s diffraction angle. Further, the 

position matches what is expected for the strongest Bragg reflection of the crystalline 

monoclinic ZrO2 phase (baddeleyite). Similarly, the XRD peak centered at 31.58 is in 

consonance with the expected position for the second strongest Bragg reflection of 

baddeleyite. These facts suggest that incipient ordered structure at 27.78 and the 

associated shoulder at 31.58 are responsible for activity and stability of the modified 

zirconia. It is also instructive to note the role that impregnating sulfate onto zirconium 

oxide produces acidic solid catalysts. This reflects the high conversions displayed by the 

synthesized materials. Interestingly also, despite the low SBET values of the synthesized 

catalytic materials (Table 1), high conversions were obtained. This further affirms the 

presence of sulfate active sites of within the surface structure of the catalysts as reported 

by [10]. However, the conversion obtained from utilizing 007F1 samples were low 

compared to that of 008F2 and 009F3 samples. Plausibly, the resulfation step and mixed 

oxide incorporated higher density of Brönsted and Lewis acid sites on the latter catalysts. 

Consequently, the authors are exploring ways of optimizing the process (SO4/ZrO2-

550°C) with hope of achieving same conversion at lower temperature and shorter time. 

 
5 Conclusion 
 

This study demonstrated the effect that slight variation in preparation method has on the 

performance of SZ. Evidently slight modification in catalyst preparation condition yields 

different catalytic activity. The domain size and lattice strain (the contribution from 

crystalline size and strain) was affected due to such modifications. These observations 

highlights the possibility of improving on the reported formulations to facilitate higher 

intrinsic efficiency in biodiesel production. The study also shows how to achieve a 

flexibility of properties from unlimited number of possible manipulations from one 

catalyst precursor. 
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