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Abstract

Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray
data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-
dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize
the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm,
which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is
based on the recently established relationship between principal component analysis and the k-means clustering. We
provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and
six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is
empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the
clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the
quality is good (ARIHA.0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA.0.9).
In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to
microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm
can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the
members is used. This has been demonstrated in this work on six non-biological data.
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Introduction

Clustering is the unsupervised grouping of objects into classes

without any a priori knowledge of the datasets to be analyzed. A

clustering algorithm is either hierarchical or partitional. Hierar-

chical algorithms create successive clusters using previously

established clusters, whereas partitional algorithms determine all

clusters at once. For the hierarchical variants, we have the

agglomerative and divisive clustering. However, in partitional

clustering, we have QT (Quality Threshold) clustering [1], Self

Organising Map (SOM) [2] and Standard k-means [3,4], which

have been evolving in recent years for high dimensional data

analysis [5,6,7,8,9,10,11]. An overview on clustering algorithms

for expression data can be found in Yona et al. [12]. Examples of

variants of k-means algorithms that attempted to enhance the

traditional k-means algorithm via improved initial centre can be

found in Deelers and Auwatanamongkol [13], Nazeer and

Sabastian [14] and Yedla et al [15]. Lastly, Kumar et al. [16] in

a recent work, enhanced the k-means clustering algorithm using

red black tree and min-heap.

The traditional k-means algorithm requires in expectation

O(nkl) run time where l is the number of k-means iterations. This

time was said to be reduced by Fahim et al. [17] to O(nk). Fahim

et al., used n
Pl

i~1

1=i to estimate the total number of data points for

each iteration that changed their clusters during the number of k-

means iterations, l, thereby deducing that the cost of using their

enhanced k-means algorithms is approximately O(nk). The k-

means algorithm described in Nazeer and Sebastian [14] also runs

in O(nk) while the one in Yedla et al. [15] runs in O(nlogn).

For efficient and effective analysis of microarray data, we

developed a novel Pearson correlation-based Metric Matrices k-

means (MMk-means). We showed that the algorithm is correct.

Experimental results show that it has a better run-time than the

Traditional k-means and other variants of k-means algorithm like

Overlapped and Enhanced k-means algorithms developed in [17].

Furthermore, the new clustering algorithm can be used for other

clustering needs as long as an appropriate measure of distance

between the centroids and the members is used. This has been

demonstrated in this work on six non-biological data.

Methods

Notation
DD:DD denotes the Euclidean norm of a vector. The trace of a

matrix X, i.e., the sum of its diagonal elements, is denoted as trace

(A). The Frobenius norm of a matrix DDX DDF ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace(X T X )

p
. In

denotes identity matrix of order n.

Basic Definitions
Metric Matrix (MM). A kxk matrix encapsulates the

correlation coefficient (r) between the centroids of the previous

(pmj) and current (mj) iterations respectively, where 0,j#k.
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Ding-He Interval. It is an interval, obtained by Ding and He

[18,19], used in our new k-means algorithm to determine when a

cluster must remain without further clustering or be subjected to

further clustering.

MMk-means Iterations (MMI). The number of k-means

iterations required before the Ding-He interval is applied in our

new k-means algorithm.

diffj. An absolute value obtained from the subtraction of the

current iteration eigenvalues (ej) from the previous iteration

eigenvalues (pej) which serves as an indicator to terminate

clustering for each cluster. Each eigenvalues set is obtained from

the corresponding Metric Matrix.

Some Set Notations
set[j]: 1#j#k is the set referring to cluster j.

add[i]: Is a function to add data point into a cluster, where i is

the index of the data.

set[j].nj: Is the size of cluster j, that is, number of data points in a

cluster j.

Algorithm Design
Our MMk-means algorithm runs like the Traditional k-means

algorithm except that it is equipped with a mechanism to determine

when a cluster is stable, that is, its membership data points will

always remain in the same cluster in each subsequent iteration. This

is an improvement over the Overlapped and Enhanced variants of

k-means algorithms introduced by Fahim et al. [17]. They equipped

their algorithms with the ability to detect the stability of a data point

but MMk-means is equipped with the mechanism to detect the

stability of a cluster representing a whole bunch of data points.

We use the recently established relationship between principal

component analysis and k-means clustering to design a mechanism

for determining when the whole data points in a cluster are stable.

We create a covariance matrix (MM of r’s), a result of computing

the Pearson product moment correlation coefficient between the k

centroids of the previous and current iterations and then deduce k

previous and current iterations eigenvalues. The difference of

these eigenvalues for each cluster is computed and checked to see

if it satisfies (that is, lies within) the Ding-He interval [18,19]. If it

does, the corresponding cluster is considered stable and there is no

need to compute its data point distances with the current centroid

of the cluster or the rest k-1 centroids.

The mechanism explained above is prescribed in the sub-

procedure Compute_MM of Figure 1 and this function is being

executed when the current total iterations number is greater than

MMI-1. For any n dataset points, given the total number of k-

means iteration l required, we can actually set MMI = l/2, but

note that l is unknown, until a traditional k-means algorithm is

executed. We know that for a given clustering procedure, k-means

algorithm aims to minimize the first Mean Squared Error (MSE1),

through a number of iterations, l, distributing all data points into

clusters, to arrive at an optimal (minimized) Mean Squared Error

(MSEl). Therefore, we estimate the required MMk-means Iteration

(MMI) to be bounded by 0,MMI#MSE1.k/MSEl. Note that for a

given set of n data points, we can form the n-by-d matrix

X = [x1,…, xn] and the first iteration of a traditional k-means

algorithm can be used to determine MSE1 in O(nk) time. Ding and

He [18,19] provided tightly upper and lower bounds for the

optimal MSEl. From these, we can compute MSEl in O(n) time.

Empirical testing followed by personal communication with Ding,

C. shows that the deduced technique does not hold for large k and

data with high dimensional d. So we still cannot estimate MSEl for

all k and d as we desire in our new k-means algorithm.

In a previous work, that led to the results in [18,19], Zha et al.

[20] obtained that:

Theorem 1. The optimal Mean Squared Error (MSEl) is bounded

from below by

MSEl§trace X TX
� �

max
AT A~Ik

trace ATX TXA
� �

~
Xd

j~kz1
s2

j Xð Þð1Þ

where sj(X ) is the j largest singular value of X and A is an arbitrary

orthonormal matrix.

Ding and He [18,19] indicated that the lower bound in theorem

1 is not asymptotically tight. They however provided (derivatively)

empirical evidence in pages 35 and 500 respectively that as the

Figure 1. Pseudocode of our Compute_MM Sub-program for MMk-means. We create a covariance matrix, computing the Pearson product
moment correlation coefficient between the k centroids of the previous and current iterations and then deduce k previous and current iterations
eigenvalues. The difference of these eigenvalues for each cluster is computed and checked to see if it satisfies the Ding-He interval.
doi:10.1371/journal.pone.0049946.g001
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number of cluster increases (that is k), the lower bound in theorem

1 becomes less tight, but still around 1.5% of the optimal values.

This can also be shown when the dimension of the data increases

and when both increase, but they do not provide logical argument

to prove this. We provide this proof in the following observation.

An important result, that we shall see soon, how it relates

centroid of each partition Xj to an eigenvalue, is given by Fan [21]

and stated below:

Theorem 2. Let H be a symmetric matrix with eigenvalues, l1§

l2§:::§lk and the corresponding eigenvector U = [u1,…,ud]. Then

l1zl2z:::zlk~ max
AT A~Ik

trace(AT HA):

Moreover, the optimal A* is given by A �~½u1, . . . ,uk�Q with Q an arbitrary

orthogonal matrix.

Observation 1. From theorem 1 above, we observed that although the

equation does not correspondingly estimate MSEl for large k and high d, it

possesses a better analytical distribution that mimic the series needed to estimate

MSEl for large k and high d.

Proof. From theorem 1, we know that

MSEl§trace(X T X ){

max
AT A~Ik

trace(AT X T XA)~
Xd

i~1
li{

Xk

i~1
li

ð2Þ

using theorem 2 above and the fact that the sum of the eigenvalues

of any (square) matrix is equal to the trace of the matrix. We can see

from equation (2) that since l1§l2§:::§ld from theorem 2, for

large k (though still %d), very few largest eigenvalues are the ones

subtracted. For larger k and higher d, the estimation in equation (2)

is kept balance by the addition of eigenvalues at the tail and the

subtraction of very few (in normal practical setting) at the rear of the

series. This way, the lower bound in theorem 1 though may be less

tight is still within the excellent reach of the optimal value. %

Using this observation, in the following, we are able to estimate

more accurately a multiplier, we called m, that is useful in the

prediction of MSEl from MSE1 and consequently determine MMI.

Observation 2. From equation (1), we can estimate

m§

Pd
i~kz1 s2

j (X )

f
Pd

j~1 s2
j (X ){

Pk
j~1 nj DDmj DD2g

,

where s2
j (X ) is the j largest singular value of x, nj is the size of the data vectors

in cluster j and mj is the mean vector of these data vectors. And consequently

find MSEl , mMSE1. We encapsulate the computation of the multiplier m in

an implicit subprocedure Compute_multiplier in line 1 of Figure 2.

Proof. Recalling what we stated earlier on in the body of the

paper, it is known that for a given clustering procedure, k-means

algorithm aims to minimize the first Mean Squared Error (MSE1),

through a number of iterations, l, distributing all data points into

clusters, to arrive at an optimal (minimized) Mean Squared Error

(MSEl).

Zha et al. [20] in their attempt to prove theorem 1 (stated in the

paper main body) showed that theoretically

MSE1~
Xk

j~1

MSEj~
Xk

j~1

trace(X T
j Xj){

eTffiffiffiffi
nj
p

 !
(X T

j Xj)
effiffiffiffi
nj
p

 ! !
,

~trace(X T X ){trace AT X T XA
� �

,trace(AT X T XA),

ð4Þ

where A is an n x k orthonormal matrix given by

A~ ..
.

n1

nk

effiffiffiffiffi
n1
p

effiffiffiffiffi
n2
p

..

.

effiffiffiffiffi
nk
p

0
BBBBBBBBB@

1
CCCCCCCCCA

, ð5Þ

e is a vector of appropriate dimension with all elements equal to

one and nj , 1ƒjƒk are number of data points in each cluster.

They also showed that

trace(AT X T XA)~
Xk

j~1
nj DDmj DD2: ð6Þ

So MSE1 in equation (4) becomes

MSE1~
Xd

j~1
s2

j (X ){
Xk

j~1
nj DDmj DD2:

Minimizing equation (4) and using theorem 2 and equation (6)

above, Zha et al. [20] showed that MSE1§
Pd

i~kz1

s2
j Xð Þ as given

in theorem 1 (of the main body of this paper).

So we can estimate the factor m that relates MSEl and MSEl as

follows:

m§

Pd
i~kz1 s2

j (X )

f
Pd

j~1 s2
j (X ){

Pk
j~1 nj DDmj DD2g

:

And therefore from observation 1, for large k and d, we can

estimate MSEl from MSE1 and consequently have MSEl*MSE1:
%

Observation 3. For each iteration, given MSEl*MSE1, we can

determine MMI, by estimating the distance of the current iteration MSE away

from the final and optimal MSE, MSEl and the first instance when(1{
mMSE1=current iteration MSE)ve, where ew0, MMI is equal to

the current total iterations number. This is also implemented in lines 35–40 of

Figure 2.

Proof. The most widely used convergence criteria for the k-

means algorithm is minimizing the MSE. Selim and Ismail [22]

provided a rigorous proof of the finite convergence of the k-means

type algorithm for any metric. We know that every convergent

sequence (with limit s, say) is a Cauchy sequence, since, given any

real number ew0, beyond some fixed point, every term of sequence

is within distance e=2of s, so any two terms of the sequence are

within distance e of each other. By definition, a Cauchy sequence is

a sequence, an such that for any ew0there exists an integer K$1

such that Dan{amDve for all n and m with mwn§K.

MMI that we seek in this observation is K, since

DmMSE1{current iteration MSEDve following the Cauchy se-

quence definition. This can be rewritten as 1{mMSE1=
current iteration MSEve. This completes the proof. %

Using the devices enumerated above, our new k-means algorithm

is presented in Figures 1 and 2. We now prove the correctness of this

algorithm.

MMk-means algorithm correctness proof
To prove the correctness of our new and novel k-means

algorithm, we will need the following definitions from Kumar et al.

[23] and Kanungo et al. [24].

Reducing the Time Requirement of k-Means Algorithm
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Definition 1. Given a set of k points K, which we also denote as

centers, define the k-means cost of X, set of n points in d-dimensional space Rd ,

with respect to K, D(X ,K)as

D(X ,K)~
X

x[X
d(x,K)2,

where d(x, K) denotes the distance between x and the closest point to x in K.

Definition 2. For a set of points X, define the centroid, C(X), of X as

the pointP
x[X x=DX D. For any point a[Rd , it follows that

D(X ,a)~D(X ,c(X )zDX D:D(c,X ),a):
Let the centroids at each k-means iteration be mi

1,mi
2,:::,mi

k,
1#i#l where l is the total number of k-means iterations. Now, we

will also need the following lemma. The following lemma shows

the mathematical correctness of our key sub program, Compu-

Figure 2. Pseudocode of our main program for MMk-means. It runs similar to the traditional k-means except that it is equipped with a metric
matrices based mechanism to determine when a cluster is stable (that is, its members will not move from this cluster in subsequent iteration). This
mechanism is implemented in sub-procedure Compute_MM of Figure 1. We use the theory developed by Zha et al. [20] from the singular values of
the matrix X of the input data points to determine when it is appropriate to execute Compute_MM during the k-means iterations. This is
implemented in lines 34–40.
doi:10.1371/journal.pone.0049946.g002
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te_MM of Figure 1, which encapsulates the mechanism we used to

identify stable partitions in our new MMk-means algorithm.

Lemma 1. For a partition Xj at t{iterationƒl, let diffj~

Dpej{ej D, if Ding{HeH1vdiff jvDing{HeL0 then

D(X t
j ,mt

j )~D(X i
j ,mi

j) for tviƒl:

Proof. Note that the Metric Matrix, MM in sub-procedure

Compute_MM of Figure 1, which is the key mechanism we used to

identify stable partitions, is the k x k correlation coefficient matrix

generated between the centroids of the previous and current

iterations of the k-means algorithm. Note further that this matrix is

a covariance matrix [25].

Note that the minimization of equation (4) is equivalent to

max~ trace(AT X T XA)DA of the form 5ð Þ
� �

:

Equations (4) and (6) relate minimized MSE to maximizing the

sum of the centriods. Note also that equation (6) and theorem 2

above relate centriods of each partition to an eigenvalue.

Iteratively, MM in Compute_MM relates centriods of previous

and current iterations respectively and therefore from equation (6)

and theorem 2, its eigenvalues characterize the iterative minimized

MSE of each partition and diffj is an estimate of how close is the

minimized MSE for a partition (in term of its centroid) to the

optimal one. Since Ding and He [18,19] had shown an upper and

lower bound to expect this, then if Ding{He H1vdiffjvDing{

He L0, the centroid of the corresponding partition Xj virtually

does not change in subsequent iterations.

This translates to D(X t
j ,mt

j )~D(X i
j ,mi

j) for tviƒl from

definition 2. %

The following is now the correctness proof for the MMk-means

algorithm.

Theorem 3. Given a point set X, MMk-means returns a k-means

solution on input X.

Proof. We should note that our algorithm maintains the

following loop invariant:

Table 1. Short statistics on the three microarray experimental
data used in the testing of our algorithm and the other three
variants of k-means algorithm.

P.f Microarray
Experimental data Total No Of Genes Time points

Bozdech et al, (2003)-
3D7 strain data

4596 53

Bozdech et al., (2003) –
Hb3 strain data

4313 48

Le Roch et al, (2003)
3D7 strain data

5159 16

The second and third columns indicate the total number of genes covered in
each experiment and the number of points (at equal interval) at which the
genes transcriptional expression are measured.
doi:10.1371/journal.pone.0049946.t001

Figure 3. Quality of Clusters (Bozdech et al., P.f 3D7 Microarray Dataset). The qualities of clusters for the four algorithms are similar. The MSE
decreases gradually as the number of clusters increases except for k = 21 that has a higher MSE than when k = 20.
doi:10.1371/journal.pone.0049946.g003
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Invariant: Let

M~ Mi
1, . . . mi

k

� �
, for i~1, . . . ,l{1 and V1ƒjƒk

(1) D(X iz1
j ,miz1

j )ƒD(X i
j ,mi

j),

(2) The set X is a subset of X1|X2|:::|Xk.

It is straight forward to note that for i~0, the invariant holds.

Now, let assume that the invariant holds for some fixed i~p, its

remains to show that the invariant holds for i~pz1 as well, then

we are done.

Based on our assumption, for i~p,

D(X
pz1
j ,m

pz1
j )ƒD(X

p
j ,m

p
j ) Vj ð7Þ

For i~pz1, we have to show for every j that it is either

D(X
pz2
j ,m

pz2
j )~D(X

pz1
j ,m

pz1
j ) ð8Þ

or

D(X
pz2
j ,m

pz2
j )vD(X

pz1
j ,m

pz1
j ) ð9Þ

Note that for a partition Xj , if D(X
pz1
j ,m

pz1
j )~D(X

p
j ,m

p
j ) from (1)

above then using lemma 1, D(X
pz2
j ,m

pz2
j )~D(X

pz1
j ,m

pz1
j ) for

all iteration later on. This proves (8) above.

Now if D(X
pz1
j ,m

pz1
j )vD(X

p
j ,m

p
j ) from (7), it remains to prove

that

i) D(X
pz2
j ,m

pz2
j )vD(X

pz1
j ,m

pz1
j ) or

ii) D(X
pz2
j ,m

pz2
j )~D(X

pz1
j ,m

pz1
j )

Lemma 1 indicates the condition to expect ii), so we are done as

regards this. If this condition is not valid for a particular partition

Xj then m
pz2
j =m

pz1
j . From definition 1,

D(X
pz2
j ,m

pz2
j )~D(X

pz2
j ,a){DX pz2

j D:D(m
pz2
j ,a) ð10Þ

and

D(X
pz1
j ,m

pz1
j )~D(X

pz1
j ,a){DX pz1

j D:D(m
pz1
j ,a) ð11Þ

Figure 4. Execution Time (Bozdech et al., P.f 3D7 Microarray Dataset). The plot shows that our MMk-means has the fastest run-time for
tested number of clusters, 15#k#25. Comparatively, k = 20 took the longest run-time for all the four algorithms, implying that this is a function of the
nature of the data under consideration.
doi:10.1371/journal.pone.0049946.g004
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for any point a[Rd . Note that for our MMk-means algorithm and

infact any other k-means algorithm, if m
pz2
j =m

pz1
j , then

D(m
pz2
j ,a)vD(m

pz1
j ,a)and therefore from equations (10) and

(11), D(X
pz2
j ,m

pz2
j )vD(X

pz1
j ,m

pz1
j ). This completes the proof

for (9) above.

It now remains to show that for each iteration i in our MMk-

means algorithm, the input set X is a subset of X i
1|X i

2|:::|X i
k.

This is actually straight forward. Note that for an iteration i, x[X ,

there exist only one closest mi
j centriod to x from M for a particular

partition X i
j , such that x[X i

j . This shows that all x[X belongs to a

partition X i
j for 1ƒjƒk and therefore X is a subset of

X1|X2|:::|Xk. %

Results and Discussion

Using C++, we implemented the three variants of k-means

algorithms, namely, the Traditional, Overlapped and Enhanced k-

means following Fahim et al. [17] design. We also implemented

the fourth one, our MMk-means algorithm using C++ and

MATLAB. See the additional file S1 of this paper for the source

codes of these programs. Ding and He [18,19] experimentally

determined an interval: 0.5–1.5%, which indicates when a cluster

is optimally equal to the expected ones. We used this in our

Compute_MM of Figure 1, where we set L0 = 0.5% and

H1 = 1.5%. Finally, Observation 3 is implemented with experimen-

tally determined e= 0.007.

We tested the algorithms using normalized microarray expres-

sion data at varying timepoints for P. falciparum microarray

experiment data from [26] and [27] as depicted in Table 1. See

additional file S2 for a zip file containing all the microarray data.

The number of genes ranges from 4313–5159 while the number of

time-points is from 16–53. The values of k include 15, 17, 19, 20,

21, 23, 25. The system used is a DeLL computer, INTELH
CORETM DUO CPU T2300 @1.66 GHz, 512 RAM, 80 GB

HDD.

The plots of minimized Mean Standard Error (MSE) versus k

values help to measure clusters quality (that is, its effectiveness) and

run time (in sec) versus k help to measure each algorithm’s

efficiency empirically. For the malaria microarray data from

Bozdech et al. [26], these plots are shown in Figures 3 and 4. These

results are similar to what was obtained from the other malaria

microarray data as indicated in Table 1. It was observed that

eigenvalues of the Metric Matrix, MM decrease along the diagonal

matrix from top to bottom for all iterations except the last one and

change interestingly at the last iteration by increasing from top to

bottom. It should be noted that the stability condition for cluster as

measured by diffj of line 7 in Figure 1 does not apply appropriately

to negative gene expression values as we have in Le Roch et al. [27]

data. The theoretical reason is given in [18,19]. We observed that,

nevertheless, our new algorithm compared excellently to the

Traditional k-means.

We found out that the algorithms of Fahim et al. [17] were

slower than the Traditional k-means contrary to the claim of the

authors. This observation made us to take a critical look at the

design of the two algorithms of Fahim et al. [17] theoretically.

Fahim et al. designed two new variants of k-means algorithms

noting that if the distance between a data point and the current

centroid (new center) of the cluster that it was assigned to in the

previous iteration is less than or equal to the distance of the data

point to its previous centroid (old centre), then the point remains in

that cluster and there is no need to compute its distance to the

other k-1 centers. To do this, they introduced two arrays, namely

Clusterid and Pointdis to keep track of the centroid to which each
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point is assigned to and the distance between this point and its

centroid. Fahim et al. [17], used n
Pl

i~1

1=i to estimate the total

number of data points for each iteration that moved from their

clusters during the number of k-means iterations, l and showed

that the cost of using an enhanced k-means algorithm is

approximately O(nk). We observed that the total number of data

points for each iteration that moved from their clusters during the

k-means iterations is not strictly monotonically decreasing and thus

their Overlapped and Enhanced k-means algorithm eventually still

costs O(nkl) run time in expectation. From the foregone, the two

algorithms have the same asymptotic run time as the Traditional

k-means algorithm but in practise (from our experimental

experience) slower than the traditional one.

Whenever k (number of clusters) ,d (dimension or timepoints),

effective clustering is achieved for the four algorithms and our

MMk-means has the best empirical runtime. Overlapped and

Enhanced k-means are the slowest in all cases. Empty clusters are

created by all the algorithms if k.d as the clustering becomes

irregular, similar to results for 15.k.25 by Le Roch et al. [27].

To further ascertain the quality of our new algorithm on the

three microarray data of Table 1, we assessed the quality of its

clusters and that of Enhanced and Overlapped k-means respec-

tively, against the clusters from the Traditional k-means, using the

Table 3. Hubert-Arabie Adjusted Rand Index (ARIHA) Cluster Quality Computation Result for Non-biological data.

Traditional k-means Enhanced k-means

Abalone Wind Letter Abalone Wind Letter

K = 5 k = 7 k = 5 k = 12 k = 5 k = 10 k = 5 k = 7 k = 5 k = 12 k = 5 k = 10

MMk-means 0.8472 0.6045 1.0000 0.9205 0.8623 0.8015

Enhanced
k-means

0.9454 0.9837 0.9992 0.9997 0.9930 1.0000

Overlapped
k-means

0.9540 0.9004 0.9895 0.9821 0.9875 1.0000 0.9544 0.9064 0.9904 0.9818 0.9879 1.0000

For each data, Abalone, Wind and Letter as described in Table 4 below, we used two values of k to demonstrate the effect of changing k values on the clusters quality of
the clustering algorithms. We considered the structure of the Traditional k-means as the known structure and compare the clusters of MM, Enhanced and Overlapped k-
means respectively with it. In a separate (last) column, we also compare the structure of the Enhanced k-means with that of Overlapped k-means.
doi:10.1371/journal.pone.0049946.t003

Table 4. Non-Biological data used for testing our algorithm
and the other three variants of k-means algorithm.

Dataset No of Records No of Attributes

Abalone 4177 7

Wind 6574 12

Letter 20000 16

Abalone dataset described with 8 attributes represents physical measurements
of abalone (sea organism). Wind dataset described by 12 attributes represents
measurements on wind from 1/1/1961 to 31/12/1978. Letter dataset represents
the image of English capital letters described by 16 primitive numerical
attributes (statistical moments and edge counts).
doi:10.1371/journal.pone.0049946.t004

Table 5. Performance comparison for all types of k-means algorithms considered for very large data sets.

Input Size of Data Run time (in sec) versus k

4.3 MB (10,000650) k Traditional_k-means MMk-means Overlapped k-means Enhanced k-means

10 57.252 54.226 87.875 85.738

20 69.498 59.647 87.875 106.439

30 85.910 82.291 24.769 128.873

40 72.603 69.324 109.653 111.993

12.9 MB (30,000650) k Traditional_k-means MMk-means Overlapped k-means Enhanced k-means

10 120.167 115.152 191.366 184.580

20 215.780 209.612 319.786 355.417

30 404.152 396.536 592.648 611.384

40 297.307 286.023 428.004 424.759

21.5 MB (50,000650) k Traditional_k-means MMk-means Overlapped k-means Enhanced k-means

10 250.069 242.406 378.661 385.697

20 520.091 484.117 696.014 704.657

30 550.652 539.308 816.478 853.684

40 641.117 631.755 971.559 961.075

This constitute simulation of three large data sets in the order of; 10,000650, 30,000650 and 50,000650 dimension. The range of K used is 10#K#40 for the four
algorithms.
doi:10.1371/journal.pone.0049946.t005
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Hubert-Arabie Adjusted Rand index (ARIHA) [28]. The result of

this assessment is given in Table 2 for biological data and in Table 3

for non-biological data. Considering each biological data, Bozdech

et al. 3D7 and HB3 strains [26] and Le Roch et al. [27], we used

two values of k to demonstrate the effect of changing k values on

the clusters quality of the clustering algorithms. In a separate

column, we also compare the structure of the Enhanced k-means

with that of Overlapped k-means. We found out that Enhanced

and Overlapped k-means respectively produced similar clusters

and their structures are similar to that of the Traditional k-means.

For MMk-means, this is also the case and we found categorically

that when k is close to d, the quality of its clusters is good

(ARIHA.0.8) and when k is not close to d, the quality is excellent

(ARIHA.0.9).

In Osamor et al. [29], we demonstrated the biological

characteristics of our new algorithm against other well known k-

means clustering algorithms. Interestingly, from this application,

we discovered a new functional group for some set of genes of P.

falciparum.

To test the behavior of our new algorithm on non-biological

data, we used first, the data of Fahim et al. [17]. Details on these

datasets are given in Table 4. The result of this exercise is given in

Table 3. The quality of MMk-means clusters is similar to what we

observed from that of the biological data. Next, we tested MMk-

means algorithm on three large simulated datasets of 50

dimensional size and with 10000, 30000, 50000 items respectively.

The result is shown in Table 5. MMk-means is empirically efficient

than all other three algorithms and the quality of MMk-means

clusters is again similar to what we observed from that of the

biological data.

Conclusion
To achieve efficient but also effective analysis of microarray

data, we developed a novel Pearson correlation-based Metric

Matrices k-means (MMk-means). We provided the correctness

proof of this algorithm. Experimental results show that it has a

better run-time than the Traditional k-means and other variants of

k-means algorithm like Overlapped and Enhanced k-means

algorithms developed in [17].

It must be pointed out that the results (extended theories and

experimental) of this work provide additional toolkits to analyze

successfully high dimensional datasets, which of recent, are of

incredible growth [10,11,30]. However, the new clustering

algorithm can be used for other clustering needs as long as an

appropriate measure of distance between the centroids and the

members is used. This has been demonstrated in this work on

three moderate size and three heavy non-biological data.

Supporting Information

File S1 Traditional, Overlapped, Enhanced and MM-
kmeans algorithms C++ codes. Kmeansprograms.zip con-

tains Traditionalkmeans.cpp, Overlappedkmeans.cpp, Enhan-

cedkmeans.cpp and Mmkmeansmmi.cpp. These programs are

implemented using Borland C++ version 5.0 and MATLAB

version 7.0. The steps on how to run the programs are stated at the

beginning of the program files in the zip.

(ZIP)

File S2 The three microarray experimental data used in
the testing of our algorithm and the other three variants
of k-means algorithm. The files in this Data.zip are as follows.

These files can best be viewed using MS Excel or Notepad. 1.

Bozdech3D7.txt from Bozdech et al., (2003) for P.falciparum 3D7

strain microarray data 2. BozdechHB3.txt from Bozdech et al.,

(2003) for P.falciparum HB3 strain microarray data 3. Ler-

och3D7.txt from Le Roch et al., (2003) for P.falciparum 3D7 strain

microarray data.

(ZIP)
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