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Abstract: In this paper an evaluation model for object-oriented (OO) metrics is proposed. 

We have evaluated the existing evaluation criteria for OO metrics, and based on the 

observations, a model is proposed which tries to cover most of the features for the 

evaluation of OO metrics. The model is validated by applying it to existing OO metrics. In 

contrast to the other existing criteria, the proposed model is simple in implementation and 

includes the practical and important aspects of evaluation; hence it suitable to evaluate and 

validate any OO complexity metric. 
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1 Introduction 

Several researchers have proposed a variety of criteria [1-11] for evaluation and 

validation to which a proposed software metric should adhere. Amongst them, we 

can mention validation through measurement theory [2, 4, 6], IEEE standards [5] 

Kaner’s framework [3], and Weyuker’s properties [11]. However, most of the 

existing evaluation and validation criteria were proposed when procedural 

languages were dominant. After the adaptation of OO languages by the software 

industry, not too much effort has been made to develop a model/ framework for 

evaluating software complexity measures in the OO domain. There are some 

proposals for OO languages [12-15]; however, most of them cover only specific 

features of evaluation. For example, Zuse’s properties [15] for OO metrics are 

mathematical in nature and based on principles of measurement theory. The lack 

of proper guidelines for evaluation and validation of OO metrics motivate us to 

develop a new evaluation criterion which includes all the features required for 

evaluation of the OO metrics. For achieving this goal, first we have analyzed the 

available validation and evaluation criteria, extracted their important features, 

suggested additions/modifications (if required), then presented them in a formal 

way. The validity of the proposed model is evaluated by applying eleven different 

well-known OO metrics. These metrics are described in the next section. 
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OO metrics are measurement tools to achieve quality in software process and 

product. However, in general, software measurement has not yet achieved the 

needed degree of maturity [9] and it needs standardization [16]. Existing 

proposals, such as Weyuker’s properties [11] and the application of measurement 

theory in software engineering [2, 4, 6, 17, 18], are a topic of discussion [19-23]. 

We have also worked in the related area of software measurement and presented 

several papers. We have presented a paper on the usefulness of Weyuker’s 

properties for procedural languages [24]. In another work, we have analysed how 

Weyuker’s properties are used by the developers of three OO metrics [25]. We 

have previously performed experimentations to analyse the current situation of 

standard measurement activities in small and medium software companies [26]. 

We have also performed a study on the situation of the empirical validation of 

software complexity measures in practice, and we accordingly proposed a model 

[27]. The applicability of measurement theory on software complexity measures is 

also investigated in one of our previous works [22]. In the present paper we 

analyse the present practices used for evaluation and validation of OO metrics, 

and we accordingly present a model for evaluating OO metrics. We also propose a 

framework for evaluating software complexity measures but, the present paper is 

specifically for OO metrics, since OO languages do not share the same features 

with procedural languages. 

Research Problem and Methodology 

The literature survey shows that there exist lapses in the measurement process in 

software engineering. Following this, several researchers have tried to propose a 

variety of criteria [1-15, 28-30] for different types of measurements in software 

engineering. OO programming, which is a relatively new programming paradigm 

in comparison to procedural languages, has received a lot of acceptance from the 

industry. Several researchers have also proposed software metrics to evaluate its 

complexity. However, a lack of standard guidelines makes it difficult to propose 

useful metrics based on a strong theoretical scientific foundation. 

We are motivated to present this paper by the following research questions: 

Do the exiting criteria for the evaluation of OO metrics evaluate most of the 

features required for an OO metric (1)? 

Should all the features suggested for metrics also be applicable to OO metrics? (2) 

To answer these questions, we keep the agenda of the present work as follows; 

1 To evaluate the existing criteria which are used for evaluating OO metrics. 

2 To extract the important features from the existing criteria for evaluating 

OO metrics (several well-known metrics are applied on these criteria to 

extract the features which are useful for OO metrics). 



Acta Polytechnica Hungarica Vol. 8, No. 5, 2011 

 – 111 – 

3 To propose a model (based on the evaluation of the existing criteria) which 

is based on sound scientific principles and which is also easy to adopt by 

the community. 

4 To validate the model by examining it against several well-known and 

newly proposed metrics. 

The initial version of the present work was presented in ICCSA 2009 [31]. In this 

paper [31], we evaluated each of Weyuker’s properties for OO metrics based on 

experimentation. In addition, we have evaluated all the considered OO metrics 

against language independency and additive property. In the present work, we 

have extended our previous work. We are evaluating the applicability of 

measurement theory on OO metrics. Based on the evaluation of measurement 

theory, scale measurement, language independency and Weyuker’s properties, we 

propose a model for the evaluation of OO metrics. This model for the evaluation 

of the OO metrics includes all the required features which are essential for the 

evaluation and validation of OO metrics. 

The remainder of this paper is organized as follows: The evaluation of the 

applicability of Weyuker’s properties and the principals of measurement theory to 

OO metrics is given in Section 2. A brief analysis of existing important validation 

criteria is also given in the same section. The proposed model is given in Section 

3. The observations are summarised in Section 4. Lastly, the conclusions drawn 

from the work are summarised. 

2 An Analysis of Existing Validation Criteria 

Several authors [12-15, 32] have attempted to provide the features of OO metrics 

and systems. This section provides a brief discussion of some of the important 

existing evaluation and validation criteria for OO metrics. The rest of the 

validation criteria are either related to them or specially confined to a single 

attribute of a software measure. For example, in [14] the authors have emphasized 

that object-oriented metrics should be evaluated through some quality attributes 

and have left out other issues (for example practical usefulness) which are also 

important for the complete validation process. 

Weyuker’s [11] properties are well-established evaluation criteria for software 

complexity measures. A good complexity measure should satisfy Weyuker’s 

properties. Although she proposed the properties at the time when procedural 

languages were dominant, even at present these properties are also valuable to 

evaluate OO metrics. A significant number of researchers [33-37] have evaluated 

OO metrics by the complexity properties proposed by Weyuker [11]. For example, 

Chidamber and Kemerer [33] have applied them for the theoretical evaluation of 

their OO metrics and, due to the high popularity and acceptance of Chidamber et 
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al.’s metrics, these properties are assumed to be accepted as an evaluation criterion 

for OO metrics [25]. Consequently, several researchers have used these properties 

for the evaluation of their object-oriented metrics. Other examples that follow 

Chidamber et al.’s criteria for theoretical evaluation include a complexity metric 

based on the different constituents of the components, such as inheritance of 

classes, methods and attributes proposed by Sharma Kumar & Grover [36], and 

two OO software design metrics for exception-handling proposed by Aggarwal, 

Singh, Kaur & Melhotra [35], who have also used Weyuker’s properties for 

theoretical evaluation. We have observed that, in their evaluation, Weyuker’s 

properties have been misunderstood [25]. 

Measurement theory provides strong rules for the evaluation of software 

complexity measures. Evaluation through measurement theory proves the 

scientific basis of the proposed measure. It also proves that the proposed measure 

actually measures what it is supposed to measure. However, there is a problem in 

the applicability of measurement theory to software engineering. It is not easy to 

find a single method that can be accepted by all the software community. Then the 

question arises: which one is the valid measurement? Some authors put emphasis 

on representation condition [4], while others emphasized extensive structure [17]. 

In the next section we also evaluate the applicability of the principals of 

measurement theory to OO metrics. 

Zuse [15] proposed properties of OO software measure based on measurement 

theory. The validation criteria for complexity measure related to measurement 

theory states that a valid measure should assume an extensive structure. Zuse 

himself proved that software measures for OO languages mostly do not assume an 

extensive structure. Zuse has also given more properties for this purpose, but most 

of them are not in common use. One of the reasons for the minimal success of 

these properties is due to fact that these properties are not easy to understand. We 

will discuss these properties in more detail in Section 2.2. 

Linda [14] identified that efficiency, complexity; understandability, reusability, 

testability and maintainability are five attributes for measuring software quality. 

An OO metric should measure one or more of these attributes and must evaluate 

the object-oriented concepts, classes, methods, cohesion, inheritance, 

polymorphism, number of messages, and coupling. His proposal is concise and 

useful. We consider Linda’s suggestion in our model. 

Radu [13] has proposed a new mechanism named detection strategy for increasing 

the relevance and usability of metrics in OO design by providing a higher-level 

means for interpreting measurement results. He suggested that four criteria are 

useful for good design: low coupling, high cohesion, manageable complexity, and 

proper data abstraction. Radu’s proposal is related to the features of OO software 

development. 

We have considered eleven OO complexity metrics. We have applied all these 

metrics to existing evaluation and validation criteria. We have also applied these 
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metrics to validate our proposed model. We have considered the weighted 

methods per class (WMC), depth of inheritance tree (DIT), number of children 

(NOC), coupling between objects (CBO), response for a class (RFC), lack of 

cohesion in method (LCOM), [33] weighted class complexity (WCC) [37], 

complexity measures for object-oriented program based on entropy (CMBOE) 

[34], component complexity (CC) [36], number of catch blocks per Class (NCBC) 

and exception handling factor (EMF) [35]. The first seven metrics are taken from 

Chidamber’ and Kemerer’s paper [33]. These metrics were proposed in 1994 and 

presently they are the most accepted metrics for the evaluation of OO code. CC 

was proposed by Sharma, Kumar & Grover [36] in 2007. WCC was proposed by 

Misra and Akman [37] in 2008. NCBC and EMF were proposed by Aggarwal, 

Singh, Kaur and Melhotra [35] in 2006. CMBOE [34] is based on the concept of 

entropy and was proposed in 1995. One common thing amongst all these metrics 

is that all of them use Weyuker’s properties. This is advantageous for us because 

we are also evaluating the relevance of Weyuker’s properties. Further, all the 

complexity measures/metrics under consideration are available online; we do not 

describe the metrics further but instead we recommend our readers to follow [33-

37], for the details of these metrics. 

2.1 Weyuker’s Properties and OO Metrics 

We have evaluated all the above complexity measures against each of Weyuker’s 

properties. Table 1 has been constructed based on the applicability of Weyuker’s 

properties to different complexity measures. The data for this table is collected 

from the original papers, where they used Weyuker’s properties for the theoretical 

evaluation of their metrics. 

Table 1 

Different OO measures and Weyuker’s properties 

P. N: property number, Y: Yes (satisfied), N: No (not satisfied) 

P.

N 
WMC DIT NO

C 
CBO RFC LCO

M 
WCC 

CM

BOE 
CC NCBC EMF 

1 Y Y Y Y Y Y Y Y Y Y Y 

2 Y Y Y Y Y Y Y Y Y Y Y 

3 Y Y Y Y Y Y Y Y Y Y Y 

4 Y Y Y Y Y Y Y Y Y Y Y 

5 Y Y/Y/

N 
Y Y Y N 

Y 
N Y N N 

6 Y Y Y Y Y Y N Y Y Y Y 

7 Y Y Y Y Y Y 
N 

N Y Not 

used 

Not 

used 

8 Y Y Y Y Y Y Y Y Y Y Y 

9 N N N N N N 
N 

Y Y Not 

used 

Not 

used 
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Misra and Akman [25] have evaluated the applicability of Weyuker’s properties to 

component complexity (CC) [36], number of catch blocks per class (NCBC) and 

exception handling factor (EMF) [35], and they have demonstrated how these 

properties have been misunderstood when applying for their measures. In their 

work [25], the authors have applied Weyuker’s properties to these metrics in a 

concise way. We extend their work and now evaluate the practical applicability of 

these properties with eleven OO metrics. 

Based on the observations of Table 1, we have drawn the following conclusion for 

the applicability of each Weyuker property to evaluate any OO metric. Weyuker’s 

properties were initially proposed for procedural languages. We present these 

properties for the OO domain by considering class [25] as a basic unit instead of 

program bodies. 

Property 1: (P) (Q) ( P  Q)Where P and Q are the two different 

classes 

This property states that a measure should not rank all classes as equally complex. 

From Table 1, it is discovered that all complexity measures satisfy this property. 

Since not all classes can have the same value for a metric, all measures satisfy this 

property. 

If any measure ranks all classes as equally complex, then it is not easy to say it is 

an effective measure. Most of the metrics satisfy this property. 

The above discussion shows that this property is not very valuable for OO metrics. 

Property 2: Let c be a non-negative number, then there are only a finite 

number of classes and programs of complexity c 

This property states that there are only a finite number of classes of the same 

complexity. 

Since the universe of discourse deals with a finite set of applications, each of which 

has a finite number of classes, this property will be satisfied by any complexity 

measure at the class level. Here, c is assumed to be the largest possible number, 

and should be represented as an upper-bound on the size of the program bodies. 

As shown in Table 1, Weyuker’s second property is satisfied by all complexity 

measures. Since this property is not capable of differentiating between complexity 

measures for OO languages, and since any sensible OO measure at class level 

should satisfy this property, it is also a property that is not useful for the evaluation 

of OO metrics. 

Property 3: There are distinct classes P and Q such thatP= Q 

This property states that there are multiple classes of the same complexity. 

In other words, this property states that even if there exist different classes, the 

complexity of these classes may be the same. All the complexity measures 
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mentioned satisfy this property as given in Table 1. This is due to the fact that in 

complexity measures, we can find several classes having the same metric value. 

Property 2 and property 3 evaluate the same conclusion for any complexity 

measure. If there exist multiple classes of equal complexities, it also proves that 

the number of multiple classes is finite as is represented by property 2. For OO 

metrics, we can consider this property, since it also reflects property two. 

Property 4: (P) (Q)(P  Q & P  Q) 

This property states that implementation is important. If there exist classes P and 

Q such that they produce the same output for the same input. Even if the two 

classes have same functionality, they are different in the details of 

implementation. Or, if two programs consisting of many objects have the same 

functionality, they are different in the details of implementation. This property can 

be used for the purpose of evaluating OO metrics. 

This property is also satisfied by complexity measures given in Table 1. This is due to 

the fact that even if two classes of design perform the same function, the details of the 

design matters in determining the metric for the class. The choice of the number of 

methods is a design decision and independent of the functionality of the class. In view 

of the discussion, this property is satisfied by all complexity measures. 

Property 5: (P) (Q) (P    P; Q &Q   P; Q) 

This property states that, if the combined class is constructed by class P and class 

Q, the value of the class complexity for the combined class is larger than the value 

of the class complexity for class P or class Q. 

If we evaluate the complexity measures given in Table 1 against this property, we 

find that this property is not satisfied by LCOM, DIT, CMBOE, NCBC, and EMF. 

The failure of this property by LCOM is because the number of non-empty 

intersections will exceed the number of empty intersections [33]. DIT tree also 

does not satisfy this property for any special case, when for any two classes P and 

Q are combined, and when one is the child of the other [33]. CMBOE also does 

not satisfy this property [34]. For some cases of NCBC and EMF, they also do not 

satisfy this property. The method the developer of NCBC and EMF suggested, 

given that this property is not satisfied by any of the measures, was not 

appropriate [25]; it is possible that this property is not satisfied by these measures. 

As a conclusion, this property is worth considering for the purpose of evaluating 

OO metrics. 

Property 6a: (P) (Q)(R)(P=Q)&P;R Q; R) 

6b: (P) (Q) (R) ( P = Q) &  R; P  R; Q) 

This property shows the non-equivalence of interaction. Also this is a contextual 

property; it states that, if a new class is appended to two classes which have 
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the same class complexity, the class complexities of the two newly combined 

classes are different, or the interaction between P and R can be different than 

the interaction between Q and R, resulting in different complexity values for 

P+ R and Q + R. This is also an important property, so we may use it as one 

of the evaluating criteria for OO complexity measures.  

From Table 1, it is found that all complexity measure satisfy this property except 

WCC. All the measures satisfy this property because the interaction between the 

two classes, P and R, can be different from that between Q and R, resulting in 

different complexity values. For WCC, the cognitive weights of the methods and 

the number of attributes are fixed for any program. Joining programs R with P and 

Q adds the same amount of complexity; hence, property 6 is not satisfied by this 

measure. 

Property 7: There are program bodies P and Q such that Q is formed by 

permuting the order of the statements of P, and ( P  Q) 

This property states that permutation is significant. It means that the permutation 

of the elements within the item being measured can change the metric values. The 

purpose is to ensure that the metric values change due to the permutation of 

classes. According to Chidamber and Kemerer [33], in the case of OO 

programming in any class or object, changing the order in which the methods or 

attributes are declared does not affect the order in which they are executed. 

Moreover, they argue that this property is meaningful in traditional programming 

languages but not for OO programming. In this respect, all Chidamber et al.’s 

metrics are satisfied by this property. For NCBC and EMF, the authors have also 

applied Chidamber et al.’s statement and do not apply this property for their 

measure. However, we do not agree with their statements. In the original 

Chidamber et al. paper [33], the authors argued that this property is not useful in 

calculating the complexity of a class because the order of statements within the 

class is not important in calculating the complexity. However, in our opinion, if 

the class complexity is calculated by adding the method complexities (since the 

order of statements are important in this case) it is a challenge to neglect this 

property. However, one should be careful when using this property. This is also 

the reason why WCC does not satisfy this property. Although, Chidamber and 

Kemerer [33] suggest that it is not a useful property for OO metrics, from our 

point of view it is a useful measure for evaluating OO metrics. 

Property 8: If P is renaming of Q, then  P = Q 

This property requires that when the name of the class or object changes it will not 

affect the complexity of the class. Even if the name of the member function or 

member data in the class changes, the class complexity should remain unchanged. All 

complexity measures in Table 1 satisfy this property. Since the complexity is not 

affected by renaming, it is not a meaningful property for any OO metric. 
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Property 9: (P) (Q) ( P + Q)< ( P; Q) 

This property states that interaction increases complexity. This property states that 

the class complexity of a new class combined from two classes is greater than the 

sum of the complexities of its components. In other words, when two classes are 

combined, the interaction between the classes can increase the complexity metric 

value. Due to this reason, most of the complexity measures do not satisfy this 

property. Again, the developers of NCBC and EMF [35] have not made use of this 

property by saying that this property is not applicable for OO measure, as stated 

by Chidamber et al. [33]. Again, we do not support their statement; no such type 

of indication in the original paper of Chidamber et al. [33] has been found, and it 

has been argued that this property may not be an essential feature of OO software 

design. It appears only as a suggestion and they themselves have used this 

property for evaluating all their measures. Further, the usefulness of this property 

for OO metrics has been discussed and proved by several researchers, and it 

remains a topic of research. [19-21]. The author of the present paper has also 

proposed a modification in this property [24]. This proposal was basically for 

procedural languages, but we check its applicability to OO measures in this paper. 

Conclusion of the Evaluation of Weyuker’s properties: Weyuker’s first, 

second, third, fourth, sixth and eighth properties are satisfied by all complexity 

measures. It is because of the fact that most of the properties are general in nature 

and hence can be satisfied by any complexity measure. Furthermore, the 

observation shows that only six properties [25] are useful for OO metrics. 

However, in these properties, there is no orientation towards OO languages and 

metrics. Most of the important properties, such as property 5, 6, and 9, are based 

on the principles of measurement theory. Once we evaluate the proposed metric 

with the principles of measurement theory, it is automatically satisfied by 

Weyuker’s properties. Additionally, we have observed that Weyuker’s properties 

do not address language independency [24], which a complexity measure should 

account for; i.e. a complexity measure should be language-independent. This 

property has been proved as an essential feature for procedural language. Let us 

evaluate this property for its applicability to object-oriented metrics. 

2.2 Evaluation of the Applicability of Measurement Theory to 

OO Metrics 

The evaluation of complexity measures via measurement theory is established by 

several researchers [2, 6-10, 15, 17, 18]. However, proper applicability of these 

measures to OO metrics is not evaluated properly except by a few [15]. If we 

review the literature to find the relation between evaluation criteria for software 

complexity metrics and measurement theory, we can find three important 

proposals: Briand, Morasca, and Basili’s [2] ‘property based software engineering 

measurement’, Kitchenham, Pfleeger, & Fenton’s [6] proposal on ‘towards a 

framework for software measurement validation’ and Zuse’s proposal for software 
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measurement [15, 17]. Although many other proposals based on measurement 

theory are available in the literature, most of them are either related to these three, 

in developing stages [8] or not used by the software community [7]. In the 

following paragraph, we will see how effective these different theoretical 

evaluation criteria are in evaluating OO measures. 

Amongst available validation criteria, the framework given by Briand, Morasca 

and Basili [2] is used by several researchers [38-40]. Briand, Morasca and Basili 

[2] have proposed measurement properties of various measurement concepts, such 

as size, length, complexity, cohesion and coupling. The authors have tried to make 

the differences in these different measurement concepts by proposing a set of 

properties. For calculating the complexity of a system, they proposed five 

properties, which include nonnegative (Complexity property 1), null value 

(Complexity property 2), symmetry (Complexity property 3), module 

monotonicity (Complexity property 4) and disjoint module additive (Complexity 

property 5). The first property states that the complexity of a system should not be 

a negative value. The second property states that if a system has no elements, then 

its complexity value should be zero. The third property states that the complexity 

of a system should not depend on the convention chosen to represent the 

relationships between its elements. The forth property states that complexity of a 

system should be no less than the sum of the complexities of any two of its 

modules with no relationships in common. The fifth property states that the 

complexity of a system composed of two disjoint modules is equal to the sum of 

the complexities of the two modules. The fourth and fifth properties are related to 

the additive nature of the metric. Furthermore, by satisfying all these properties 

(Complexity.1 – Complexity.5), the measure will be on the ratio scale. It is 

important to note that the first three properties are common in other measures also, 

i.e. for length and size. In summary, by satisfying these properties by complexity 

measures, it proves the ratio scale and additive nature of the measures. 

The second method to evaluate complexity measures is through representation 

conditions [4, 6]. To satisfy the representation conditions, initially there should be 

an empirical relation system (ERS), numerical relation systems (NRS), and a 

complexity metric, which is defined as the mapping between ERS to NRS. 

Furthermore, a measure/metrics must be satisfied by the two conditions called 

representation conditions. The first part of the representation condition says that 

any empirical observation should be measurable and any measurement result 

should be empirically observable. The second part says that the complexity of the 

whole should be definable in terms of the complexities of its parts. Again, the 

conclusion of the representation condition states that the measure should be 

additive. 

Zuse [15] has introduced properties of OO software measures. This is the only 

work which especially emphasizes the properties of OO metrics. In this work, 

Zuse has proved that OO metrics do not assume an extensive structure and hence 

he has proposed some new measurement principles for OO metrics. He used terms 
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such as the Dempster-Shafer Function of Belief, the Kolmogoroff axioms and 

DeFinetti axioms. However, it is a common observation that these theories for 

OOM evaluation have neither been applied nor have they been used by most of the 

developers of OO metrics. 

The scale measurement is also an important issue for evaluating software 

complexity metrics and proved by several researchers. The third evaluation 

method which is normally applied to the complexity measures is to investigate the 

scale of the measure [17]. In fact, it is not easy to separate scale measurement with 

the first two methods, but there are also different ways to achieve the scale. There 

are two ways for scale measurement in software complexity measurement: 

admissible transformation and extensive structure [17]. It is assumed that a 

complexity measure should be on ratio scale. We have included the scale 

measurement in our model. 

Conclusion for the Applicability of Measurement Theory: In all of the above 

measurement criteria applied for evaluation of software complexity 

measurements, all of them recommend that the measure should be additive, hence 

on ratio scale. The way of achieving this goal may be different; for example 

through admissible transformation, extensive structure or representation condition, 

but the goal of all aforementioned criteria is the same, i.e. to achieve ratio scale. 

By keeping this issue in mind, in the following paragraphs we evaluate the 

additive nature of the existing object-oriented measures. Based on the evaluation, 

we will discuss the applicability and relevance of measurement theory to OO 

measures. 

2.3 Additive Property and Language Independency of OO 

Measures 

Based on the observation in Sections 2.1 and 2.2, we observed two important 

points: 

1) From measurement theory perspective, all of the different criteria suggest 

that a measure should be additive. The additive property is not directly 

addressed by Weyuker’s. 

2) In addition, Weyuker does not discuss anything regarding the language 

independency of a proposed measure. 

Following the above mentioned points, we evaluate the applicability of additive 

property and language independency to OO metrics. 

a) Additive Property 

The additive nature of the complexity measure is proved as one of the desirable 

properties from measurement theory perspective. Misra [24] has presented the 

additive property in mathematical form. In fact this property was suggested by 
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several researchers and in [24], the author has suggested modifying Weyuker’s 

property 9. First, we explain this property [24] and later we check all the 

considered OO complexity metrics against this property. 

Property 1: (P) (Q) ( P; Q)   P + Q) 

This property states that the complexity of a program (P; Q) composed of 

two components cannot be less than the sum of the complexities of its 

component bodies. 

In fact, this property is not a new one but rather a modified version of Weyuker 

property 9. Weyuker herself rejected this property, arguing that the effort needed 

to implement or understand the composition of a program body P with itself is 

probably not twice as much as the effort needed for P alone. However, it seems 

reasonable that the complexity of a program body can be related to the complexity 

of all of its parts. That is to say, it is necessary requirement for any complexity 

measure. The additive nature is also related to the scale of the measure [41]; that is 

to say, if any measure is additive, then it is also assumed to be on ratio scale. 

b) Language Independency Property 

Misra has [24] observed that Weyuker’s properties do not address language 

independency, which a complexity measure should account for; i.e. a complexity 

measure should be language-independent. The author has presented this property 

as; 

Property 2: (P)(Q)(R)(PQR&P=Q= R); Where P, Q, and R are 

the classes written in different languages 

This property states that if P, Q, and R are the classes for the same algorithm in a 

different programming language, then the complexity should be the same. In other 

words, this property states that a measure should rank the complexity of the same 

algorithm in a different language as equally complex. 

Now the applicability of these properties is checked against the OO metrics under 

consideration. 

c) Applicability of language Independency and Additive Properties to OO 

Metrics 

Weighted method per class (WMC). If WMC is calculated only by counting the 

number of methods, (In [33] the authors have suggested taking the weight of each 

method as 1 unit.) the language independent property is satisfied by this measure. 

This is because the numbers of methods for classes in different languages are 

assumed to be the same. In this respect, this property is satisfied by this measure. 

On the other hand, if we calculate the complexity of the each method 

independently, by any procedural metric, it depends on the characteristics of the 

applied procedural metric. 

 



Acta Polytechnica Hungarica Vol. 8, No. 5, 2011 

 – 121 – 

For the additive nature of WMC, if we combine two classes, it is possible that the 

number of methods in the combined class may reduce in comparison to the sum of 

the methods of independent classes because there may be some methods in both 

classes. As a result, WMC is not an additive measure. 

Depth of inheritance tree (DIT) is satisfied by the language independent 

property because the tree structure for the same problem is assumed to be same for 

all object-oriented languages.  

DIT is not an additive measure because when we combine the two classes, the 

DIT value of the resultant class will not be the sum of the DIT values of the 

independent classes. It is because of the fact that when two OO programs with 

multiple hierarchies combine with each other, they combine in parallel way. This 

is to say, if DIT value of two OO programs are 3 and 2, then it is not equal to 5 for 

the combined class. 

Number of children (NOC) also satisfies the language-independent property.  A 

similar argument for DIT is applicable to NOC. 

NOC does not satisfy the additive property due to similar arguments to those 

given above (for DIT). 

Coupling between object (CBO) also satisfies the language-independent property 

because it depends on the number of messages through which the classes are 

coupled. 

The numbers of message calls will not change by a change in the language. 

CBO is the measure which depends on the number of message calls to the other 

classes. If we combine two classes, in which one of them has a message call for 

the other class, then naturally, after combining these classes, there is no coupling 

in the combined class. In this respect, CBO also does not satisfy the additive 

property. 

Response for the Class (RFC) is defined as the total number of methods that can 

be executed in response to a message to a class. This count includes all the 

methods available in the class hierarchy. Since class hierarchy is the same for all 

languages, RFC satisfies the language-independent property. 

RFC also does not satisfy the additive property because after the combination of 

two classes, the total number of methods that can be executed in response to a 

message to a class will not be the sum of the total number of called messages of 

two independent classes. 

Lack of cohesion in method (LCOM), which is related to the counting of 

methods using common attributes, does not satisfy the language-independent 

property. This is because the use of attributes inside the methods depends on the 

programming language. 
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LCOM does not satisfy the additive property. This is because the use of attributes 

inside the methods depends on the programming language and on the fact that, 

when we combine two classes, the number of methods using the common 

attributes of the independent class will not be the sum of the combined class. 

Complexity measure for OO program based on entropy (CMBOE) is a 

measure based on entropy. The entropy of an OO program is computed on a per-

class basis dependent on the name strings, methods, messages, and their 

architecture. For a given problem, the different OO languages may have different 

representation of the classes and its contents, and therefore the entropy of the same 

problem in different OO languages may be different. From this point of view, 

CMBOE does not satisfy the language independency. 

CMBOE is not satisfied by the additive property. In the original paper [34] the 

authors have proved that the complexity of the combined class is greater than the 

sum of the complexities of independent ones. 

Component complexity (CC) is based on classes, methods, attributes and 

interfaces. The authors [36] have used the coefficients for classes, methods and 

attributes, which are dependent on the nature of the component-this means on the 

nature of programming language. As a result, CC does not satisfy language-

independent properties. 

CC does not satisfy the additive property because it is based on classes, methods, 

attributes, and interfaces. Once we combine the two classes, and if there are some 

common methods and attributes in both, then the complexity of the combined 

class reduces. 

Number of Catch Blocks per Class (NCBC) is defined as the ratio of catch 

block in a class (the sum of the catch blocks of each method) to the total number 

of possible catch blocks in a class [35]. Since NCBC depends on the internal 

architecture of the method, which varies from language to language, NCBC does 

not satisfy the language independency. 

NCBC does not satisfy the additive property because it depends on the sum of the 

catch blocks of each method, and methods may be common in both classes, which 

reduces the complexity of the combined class. 

Weighted Class Complexity (WCC) depends on the attributes and the internal 

architecture of the methods, which are not same for all programming languages. 

From this point of view, WCC is not a language-independent complexity measure. 

WCC does not satisfy the additive property. It depends on the attributes and the 

internal architecture of the methods. After combining the two classes, their 

number may reduce due to the common methods and attributes. 

Exception-Handling Factor (EHF) is defined as the ratio of the number of 

exception classes to the total number of possible exception classes in software. 

EHF depends on the classes, which should be the same for all programming 

languages. As a result, EHF satisfies the language independency. 
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EHF does not satisfy via the additive property because the number of exception 

classes is the count of the exceptions covered in a system [35]. If we combine the 

two classes, the EMF values do not combine with each other due to the nature of 

the metric; EMF is also not an additive measure. 

The applicability of language independency and the additive property by different 

complexity measures are summarized in Table 2. 

Table 2 

Language independency and additive properties of OO languages 

Properties 

----------------------- 

Metrics 

Language 

Independency 

Additive Nature 

WMC Y N 

DIT Y N 

NOC Y N 

CBO Y N 

RFC Y N 

LCOM N N 

CMBOE N N 

CC N N 

NCBC N N 

WCC N N 

EMF Y N 

From Table [2], we can easily observe that none of the OO metrics are additive in 

nature, which is not compatible with the principles of measurement theory. All the 

three proposals in measurement theory strongly suggest that a measure should be 

additive in nature [2, 6 and 17]. However, our experiments show the negative 

results and prove that OO measures do not satisfy the additive property. For the 

language independencies of OO metrics, we have found a mixed response. Six out 

of eleven OO metrics are language independent measures. Also language 

independency is a reasonable requirement for any metric hence OO metrics. 

Based on the evaluation measurement theory, scale measurement, language 

independency, additive property, and Weyuker’s properties, we propose our model 

in next section. 

3 Proposed Evaluation Criteria/ Model 

The proposed validation and evaluation criteria have the following four stages: 

1 Identifying the basic requirement for proposing OO measure 

2 Evaluation through the measurement theory and Scale measurements. 
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3 Empirical Validation 

4 Identifications of Thresholds and limitations 
 
 
 
 
 
 
 
 
 

 

Figure 1 

Proposed model for evaluation of OO metrics 

3.1 Identifying the Basic Requirement for OO Measure 

Based on the properties suggested by different scientists, the following set of 

simpler and essential properties is summarized, against which an OO 

measure/metric should be evaluated For this purpose, studies by Kitchenham, 

Pfleeger, & Fenton’s [6], Linda [14] and Morasca [18] are used to extract these 

features and present them in a formal way. 

1) Identifying the OO features under investigation. 

 The first step in proposing an OO metric is to decide what to measure. It 

is important that a metric or measure evaluates one of the following 

features of OO: methods, classes, cohesion, coupling, inheritance, 

information hiding, and polymorphism. 

 An OO metric should focus on an internal object structure. 

 An OO metric should measure the efficiency of an algorithm and the use 

of machine resources. 

 An OO metric should evaluate the psychological measures that affect a 

programmer’s ability to create, comprehend, modify, and maintain 

software. 

All of our metrics under consideration are specific to OO features. For example, 

WMC is related to the internal architecture of method and class, DIT with 

inheritance, NOC also with inheritance, CBO with coupling, RFC with class, 

LCOM with cohesion, CC, NCBC WCC,EHF and CMBOE with class. 

2) Identifying the quality factors/attributes 

The attribute(s) under investigation by the proposed OO metric should be 

identified in the beginning. If the metric or suite of metrics is capable of 
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evaluating more than one of the attributes (also called quality factors), then they 

should be priorities. Some of the attributes are: 

 Performance 

Reliability 

Maintainability 

Portability 

Efficiency 

Understandability 

Reusability 

Testability 

A number of developers of complexity measures do not care for this part. 

Although one can guess the attributes under investigation from their original 

papers, in most papers this part is not clearly defined. For example, in the original 

proposal of NCBC and EHF, nowhere in the entire paper is it discussed for which 

attributes they are proposing metrics. They stated that two metrics were developed 

to measure the amount of robustness included in the code. It can be guessed that 

NCBC and EHF are representative of maintainability. The attributes measured by 

other metrics are: maintainability by WMC, DIT, NOC, CBO, RFC, LCOM and 

CMBOE, and understandability, maintainability and reliability by WCC. 

3) A basis for the proposal of a new metric should be developed 

The foundation for the metric development should be built. It should include the 

literature survey, motivations, comparison and quality references which will prove 

the worth and need for a new proposal. Based on discussions of related work 

published, it should be clearly explained why it is important and how much the 

new metric will add to the field. Furthermore, a clear-cut proposal for the system 

should be developed, and the way, method or instrument by which it is to be 

measured should also be identified. Also the relationship between attribute and 

metric should be determined. 

Although most of the metrics under consideration have been clearly defined in 

their original papers, one can easily find a number of metrics in literature that 

were developed without a clear-cut purpose and aim. 

3.2 Theoretical Evaluation and Scale Measurement 

A metric and the prediction system are acceptable only when their usefulness has 

been proved by a theoretical validation process; otherwise it may mislead its users. 

In Section 2.2, we observed that the conclusion of most of the validation criteria 

based on measurement theory is related to the additive property of the measure. 
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However, most of the OO metrics under experimentation are not additive in 

nature. This result forces us to rethink the applicability of measurement theory to 

OO metrics. According to our point of view, we should not neglect the principles 

of measurement theory; instead, we should concentrate on some basic 

requirements and important features (from the measurement theory perspective) 

which are required to form the scientific basis of the metric. The next important 

issue in terms of measurement theory is the scale measurement of the proposed 

measure. Keeping this issue in mind, we propose simple and important features 

required by measurement theory and the investigation of the scale measurement. 

From the measurement theory point of view, there should be an entity, a property 

and measurement mapping. The measurement mapping and rules are called metric 

[18]. 

1) Entity: An entity is an object or an event in reality. For example, the entity for 

all the OO metrics under consideration is class. 

2) Property: The property of the class which is under investigation is different for 

different measures. For WMC, CC and the WCC the property is the complexity, 

for DIT, NOC, RFC and CBO the property is coupling, for LCOM the property is 

cohesion. The property for NCBC and EMF is complexity. 

3) Metric: Metrics should be defined by a function(s) which assigns a value to the 

attribute. All the metrics under consideration are properly defined in their original 

papers. Although some of them, such as NCBC and EHF, do not map their values 

to attributes, their definitions are clear. 

4) Attributes: An attribute is a feature or property of an entity. Furthermore, the 

attributes can be classified as internal and external attributes [42]. 

4.1) Internal Attributes: Internal attributes are those which can be measured purely 

in terms of the product, process or resources [42]. Since the entity for all the 

metrics under consideration is class, then we can examine the attributes which are 

related to class. 

The internal attributes for the class may be the size in terms of the number of lines 

of code, the number of methods, the number of attributes/variables, coupling in 

terms of the number of message calls to other classes, and cohesion in terms of the 

number of common attributes used in different methods of the same class. The 

internal attributes for the considered OO metrics are summarized in Table 3. 

4.2) The external attributes: External attributes are those which relate the product, 

process or resources with the external environment. For example, for object-

oriented measures, the external attributes are reliability, maintainability, usability, 

and understandability. The external attributes of all the metrics under 

consideration are also summarized in Table 3. 
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Evaluation of Measure based on Scale 

After the identifying entity, attributes and defining the metric, one must 

investigate the type of scale. Normally, there are five different types of scales: 

absolute, ratio, interval, ordinal and nominal. The definitions of all these scales are 

given in brief [17]: 

1 Nominal Scale: any one to one 

2 Ordinal scale: g: strictly increasing functions 

3 Interval scale: g(x)= ax+b, a> 0 

4 Ratio Scale: g(x)= ax, a> 0 

5 Absolute Scale: g(x) = x. 

These scales are classified according to admissible transformations [17]. 

The scale of most of the complexity measures under consideration are not 

evaluated in their original paper, except WCC. The scale for CK metric suites 

were evaluated in [43, 44]. The possible scale for all the complexity metrics are 

summarized in Table 3. 

It is worth mentioning here that most of the OO metrics are not additive in nature. 

This is also because they do not satisfy the extensive structure [17]. In other 

words, most of the OO metrics are either on an interval or ordinal scale. The scale 

of all the OO measures under investigation is given in Table 3. 

Table 3 

Attributes and type of scale for Different measures 

Y: Yes, N: No, In last row, Ns: Nominal Scale, Is: Interval Scale, Os: ordinary scale 
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Size N Y Y N N N Y N Y N N 

reuse N Y Y Y N Y Y N N N N 

coupling N Y Y Y Y N Y N Y N N 

cohesiveness N N N N N Y Y N N N N 

Functionality Y N N Y N N N N Y Y  

External 

Attributes: 

 

Maintainability Y Y Y Y Y Y 
Y 

Y Y Y Y 

reliability Y Y Y Y Y Y Y Y Y Y Y 

usability N Y Y Y N Y Y N N N N 

Understandability Y Y Y Y Y Y Y Y Y Y Y 

Scale  N
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3.3 Empirical Validation 

Several researchers [45-48] have pointed out the importance of empirical 

validation for software metrics. It is the way through which the academician and 

scientist can assist industry in selecting new technology. On the other hand, it is a 

common observation that the standard of empirical validations for software 

metrics is not up to the required level [45]. There is no match in content between 

the increased level of metrics activity in academia and industry [49]. This is 

because of the fact that there is no direct link between researchers and industry, 

and this makes it difficult to validate the metrics against real projects. As a 

consequence, researchers try to validate their metrics through other means, such as 

experimentations in labs, classrooms or the available data/programs from the 

internet. Most of the time, they fulfill only partial empirical validation. However, 

for complete empirical validation, one must apply the new technology/metric to 

real data/projects from industry. 

Considering the above pitfalls, we have suggested the application of empirical 

validation in two stages [27]. The first stage of empirical validation includes the 

initial validation of the metrics by applying them to different test cases and 

examples. In the second stage of the empirical validation, the new metric is tested 

by using real projects from the industry. The details of all the steps of the 

empirical validation process are discussed in [27]. In the following paragraphs we 

provide them in abstract form. 

The first stage of the empirical validation includes the case study, applying it to a 

small project available on the web or in literature. In this stage, the proposed 

metrics can be validated through experimentations in labs, classrooms or the 

available data/programs from the internet. In parallel, similar metrics should also 

be applied to all these different ways of validation. This will be helpful for 

comparative study and finally in proving the usefulness of the proposed metrics. 

The complexity measures under consideration, WMC, CC, WCC, DIT, NOC, 

RFC, CBO, LCOM, NCBC and EMF, have undergone these initial phases 

validation. One should bear in mind that the initial validation is not a guarantee of 

success or of the usefulness of the proposed metric without the second stage of 

validation. 

The second stage of the empirical validation proves the actual applicability of the 

proposed metric. This stage of validation is a must, and it evaluates the validity of 

the metric by applying it to a real project from industry. The difference between 

the first and second stage is that, in first stage, the examples/case studies may be 

small in size and collected from literature and web; in the second stage, the 

examples/case studies are real data from industry. As in the first stage, similar 

metrics should also be applied to the real project(s), for comparative purposes. In 

fact, the second stage of empirical validation is the real proof for a new measure. 



Acta Polytechnica Hungarica Vol. 8, No. 5, 2011 

 – 129 – 

We recommend the first stage only in the cases when the data from the industry is 

not immediately available. 

For the metrics under examination, with the exception of the CK metric suites, 

none of the metrics have been applied to real projects from industry. This is also 

the reason that none of them, again with the exception of the CK metric suites, are 

very popular and accepted in industry. 

3.4 Thresholds for the Metrics should be Identified 

After preliminary and advanced empirical validations, the thresholds for the 

metrics should be developed. Although it is possible to propose the thresholds for 

a new metric before empirical validations, empirical validations can change the 

threshold values. This is because of the fact that, after the analysis of the results 

obtained from a real project, the developer can change their thresholds. 

Furthermore, the initial proposal only gives the basic idea of the proposed 

measure, which may fail in real life applications. This is one of the reasons for the 

lack of acceptance of the majority of OO metrics from the industry which are 

available in the literature. 

The importance of thresholds is discussed by several researchers. Lorenz and Kidd 

defined threshold as [50] "heuristic values used to set ranges of desirable and 

undesirable metric values for measured software. These thresholds are used to 

identify anomalies, which may or may not be an actual problem." Henderson-

Sellers [51] states the importance of thresholds as, "An alarm would occur 

whenever the value of a specific internal metric exceeded some predetermined 

threshold." In fact, threshold values are the best indicator for the rating of the 

complexity values for an OO system. For example, in WMC measurement, if the 

number of methods for a class exceeds 100 (the weight of each method is assumed 

to be 1), then this class automatically becomes more error-prone and less 

understandable, which also increases the maintenance efforts. Also, the 

importance of thresholds is supported by cognitive theory [52, 53]. The authors in 

[52, 53] use a human memory model and suggest that more complex classes will 

overflow short term memory, which results in more errors. Contrary to these 

results, some of the authors presented some experimental results which show that 

there is no impact of threshold values on the fault tolerance. There is a continuous 

relationship between measures and fault tolerance and errors [28]. However, in 

our opinion, for any new model or theory, contradictory cases exist. Threshold 

values are only indicators and act as an alarm which tells you that over this limit 

there is a high chance of errors. It is possible that one can build a system whose 

complexity values cross the threshold values and is nevertheless error free. 

If we evaluate our metrics under consideration, we observe that most developers 

do not propose thresholds values. In particular, for the CK metric suite, the authors 

gave some hints of these numbers but did not clearly define the threshold values. 
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For example, they observed that the maximum values of DIT were 10 or less. This 

value was observed based on the empirical validation study. Later, due to the high 

popularity and acceptance of Chidamber et al.’s metrics, the thresholds were 

investigated by other authors [54]. The threshold for WMC is 100, the inheritance 

nesting level (another form of DIT and NOC) is 6 [50]), for CBO it is 5, and for 

RFC 100. For other metrics, WCC, NCBC, EMF and CMBOE, no threshold 

values were investigated. If no threshold is defined, how can one guess with 

numbers whether these numbers are either a good or bad predictor of complexity? 

Further, there exist limitations and boundaries in a new proposal. It is not easy for 

a single metric to evaluate all the aspects/attributes of code. From our point of 

view, the limitations of new measurers can best be described by the developers. 

Some of the examples include: Are the metrics applicable to the design phase or 

also applicable to the testing phases? For example, most of the metrics in the CK 

metrics suite are fit for the design phase; however, WCC is fit for both the design 

and testing phases. WCC can be applicable in the design phase to reduce the class 

complexity by limiting the number of complex methods; and in the testing phases 

it can be applied to reduce bugs. Another example of the limitation is: Can one 

evaluate the complexity only by simple calculations, or does it require software, 

and if this is the case, is it then available? If not, the chances for practical use of 

the proposed metric immediately decrease. It can be easily observed in a number 

of metrics that they have proved their worth for small codes and examples, but it is 

not easy for them to fit in the real environment of software developments, where 

codes are quite large and distributed in different classes and in different files. Also 

the developer should provide the range of values which gives an indication of the 

different levels of quality attributes. 

4 Observations 

We observe the following points in this study: 

1 There are no models/frameworks/proposals which state clear-cut guidelines 

for the properties of object-oriented measures. 

2 We have proved that the existing criteria, such as Weyuker’s properties and 

measurement theory, are as such not fit for evaluating OO metrics. 

3 It is clear from Table 1 that Weyuker’s first, second, third, fourth, sixth and 

eighth properties are satisfied by all given complexity measures. Weyuker’s 

first property states that no complexity measure can rank all classes as 

equally complex. Since the universe of discourse deals with a finite set of 

applications, each of which has at most a finite number of classes, property 

two will be satisfied by any complexity measure at the class level. 

Weyuker’s second and third properties give the same conclusion. 
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Weyuker’s eighth property is concerned with the name of the class, which 

does not affect the complexity of any class. In conclusion, Weyuker’s first, 

second, and eighth properties are found to be not useful for the evaluation 

of complexity measures for OO programming. Other properties are 

compatible with measurement principles. 

4 Weyuker’s properties number 3, 5, 6, 7 and 9 are found useful for 

evaluating OO metrics. On the other hand, all these properties are 

compatible with measurement principles. If we evaluate our measure 

through the fundamentals of measurement theory, then we have no need to 

apply Weyuker’s properties. This is the reason that we have included only 

evaluation via measurement theory, and not via Weyuker’s properties. 

5 All of the different criteria based on measurement theory recommend that a 

measure (in general) should be additive; it hence should be on a ratio scale. 

Weyuker’s modified property nine [24] is also a representation of the 

additive nature of a measure. 

6 None of the OO metrics under consideration are found to be additive in 

nature. 

7 No complexity metrics under consideration are on a ratio scale according to 

measurement theory principles. 

8 Further, the existing validation criteria/properties for OO metrics based on 

measurement theory by Zuse [15], are difficult to understand and hence not 

easy to apply to OO metrics. The theory requires a sound knowledge of 

mathematics. This is the reason that most of the proposed OO metrics do 

not follow these properties. 

9 Other measurement criteria, such as representation condition, also do not 

provide too much information (such as ratio scale and additive nature) for 

OO measures. 

All of these observations indicate that theoretical evaluation of an OO metric 

through the representation condition [4, 42], extensive structure [15, 17], and 

complexity property [2] are not effective for evaluating OO metrics. In this 

respect, the fundamental properties and definitions required by measurement 

theory should only be the necessary condition for OO metrics, which we 

summarized in Section 3.1. Furthermore, in the case of software engineering, 

empirical validation is more important than theoretical validation, and if a metric 

is properly validated empirically, via data from industry, and evaluated through 

the given fundamental definition from measurement theory, it proves the worth of 

the measure. It is also worth mentioning that, although empirical validation is the 

most important part of the validation process, it does not mean that theoretical 

validation should be ignored. Theoretical validation proves that the metric is 

developed according to certain rules and regulations and based on principles of 

measurement theory. 



S. Misra Evaluation Criteria for Object-oriented Metrics 

 – 132 – 

Conclusion and Future Work 

The necessity of evaluation and validation criteria for object-oriented metrics is 

clear. However, in assessing the existing evaluation criteria, we have observed that 

most of them consider only specific features for the evaluation of a metric, and, 

especially, they are not proposed in keeping with the special features of OO 

metrics. For example, Weyuker’s properties only cover the mathematical features 

of programs (for procedural languages) and do not evaluate any practical aspects 

of the metric. So Weyuker’s properties are not suitable criteria for the theoretical 

evaluation if applied independently. Further, measurement theory also includes 

most of the features of Weyuker’s properties; so if a measure is evaluated via 

measurement theory, then Weyuker’s properties can be avoided. On the other 

hand, additive nature and ratio scale are two main requirements for a measure 

from a measurement theory point of view; however, both are rejected by the 

majority of OO metrics. This is a constraint in the application of the principles of 

measurement theory to OO metrics. Further, the original measurement principles 

proposed by Zuse [9] are difficult to understand. Additionally, the empirical 

validation process is also not clearly mentioned in the literature. All these issues 

indicate a need for a unified model, which should be simple to apply, and which 

should cover the majority of the features required for the evaluation and validation 

of OO metrics. The presented model is an attempt to achieve this goal in this area. 

We kept all these issues in our mind before constructing our model. We have 

proposed a simple four-step model against which a software complexity measure 

for OO metric should be evaluated. Our first step is to prepare the basis of the 

proposal. The second step is related to theoretical validation, which includes the 

principles of measurement theory in a simple way. These first two steps form the 

scientific basis for proposing a new OO metric. Our third step is related to 

empirical validation, which is proposed in two steps. The final step is to provide 

thresholds for the proposed metrics based on real observations, which is intended 

to provide valuable information regarding the actual analysis of metric values. In 

fact, it is not easy to achieve completeness through independent existing 

evaluation criterion. This became a motivation for us to propose a unified model. 

We hope that our attempt will make a valuable contribution to practitioners and as 

well to academicians who have the intention of proposing a new metric in the OO 

environment. 
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