
 1

An Object-Oriented Software Model for Students’ Registration and

Examination Result Processing in Nigerian Tertiary Institutions

*Bamigbola, O.M.
1

, Olugbara, O.O.
2
 and Daramola, J.O.

3

1, 3: Department of Mathematics/Computer Science, University of Ilorin, Ilorin, Nigeria

2: Department of Computer and Information Technology, Covenant University, Otta, Nigeria.

* Author to Correspond on paper

ABSTRACT

The principles of Object-Oriented Software Engineering are employed to model a software

application known as Undergraduate Registration and Examination Processing System (SPERU)

for Nigerian Tertiary institutions. Rapid Application Development (RAD) tools are utilized in its

implementation to achieve an excellent software system.

SPERU is herein presented , as a typical instance of a well modelled software system, that

testifies to the beauty, power and supremacy of the Object-Oriented paradigm

The result of applying software predictor metrics indicates that SPERU is reliable and elegant.

1 Introduction

The effort expended in the process of registration of students and computation of their

examination results is awesome. Quite worrisome is the fact that these processes are carried out every

academic session, putting the operators in a continuous and ever demanding cycle. The computation of

examination results and registration of students is obviously an object-centered activity, the student being

the dominant object in this case. Hence, the need to evolve not just a computerized process, but an

object-oriented software design and implementation that will effectively and efficiently capture all the

important objects associated with the registration and examination result processing within the University

and the interactions among the objects.

This genuine and noble desire necessitated the design and development of the Undergraduate

Registration and Examination Processing System (SPERU) software.

2. Object–Oriented Software Design

Object-oriented design is a design strategy based on abstraction, encapsulation and

polymorphism. It views a software system as a set of interacting objects with their own private state. This

 2

makes it different from the functional design which views software system as a set of functions. Object-

oriented design has been gaining good publicity and acceptance since the late 1980s.

Apart from the business systems domain, it has become the predominant design strategy for new

software systems. The characteristics of an Object-Oriented Design (OOD) are:

(1) Objects are abstractions of real-world or system entities, which are responsible for managing their

own private state and offering services to other objects.

(2) Objects are independent entities that may readily be changed because state and representation

information are held within the object. Changes to the representation may be made without

reference to other system objects.

(3) System functionality is expressed in terms of operations or services associated with each object.

(4) Shared data areas are eliminated. Objects communicate by calling on operations (services)

offered by other objects rather than sharing variables. This reduces overall system coupling.

There is no possibility of unexpected modification to shared information.

(5) Objects may be distributed and may execute either sequentially or in parallel.

Decisions on parallelism need not to be taken at an early stage of the design process.

Many object-oriented design methods have been proposed [1,2,3,4]. However, some design

activities common to all these different propositions include:

(1) Identification of the objects in the system along with their attributes and operations;

(2) The organization of objects into an aggregation hierarchy which shows how objects are „part of‟

other objects.

(3) The constructions of dynamic object-use diagram that show which object services are used by

other objects (object interaction).

(4) The specification of object interfaces.

It should be noted that the nature of these activities is such that they are intermingled rather than

carried out in sequence. [15]

3. Representation and Design of SPERU

Our adventure into the representation and design of the SPERU system starts with the process of object

identification.

3.1 Object Identification in SPERU

The identification of objects within a system could be achieved using the steps outlined in existing

proposals as supported by [1,6,7].

A thorough analysis of the SPERU requirements reveals that the dominant objects within the system are:

University, Department, Student, Course, User, Score Entry, Programme, Course Register, Course

 3

Report and Department report. Some of these objects exist independently, while others are compositions

of other objects. Composition is a phenomenon of the object-oriented concept that allows new objects to

evolve from existing objects. The object identified are shown in Figure 3.1

Figure 3.1 SPERU Objects

University : Object

Attributes:
Name :string
 Location :string
 Logo : binary
Year founded :integer
Session : string
Currentyear : integer

Department: Object

Faculty : string
Department: string
Department code : string

Add() [add new department]
Delete() [delete department]
Edit() [change department Info]

Programme : Object
Parent: Department
Programme name : string
 degree : string
Duration : string
Last level : integer
Department : Object

Add() [add new department]
Delete() [delete department]
Edit() [change department info]

Student : Object

Name :string
MatricNo :string
 Type : string
 Sex : string

Course: Object

CourseCredit : integer
CourseCode : string
CourseTitle : string
CourseLecturer : string
CourseCategory : string
InternalExaminer: string
ExternalExterminal:string

Add()
Delete()
Edit()
List()

Minor : Object
Parent: Student

Department : string
Session : string
Student : Object

Add()
Delete()
Edit()
Browse()

Major : Object
Parent: Student
Department : string
Programme : string
Photograph: binary
Date of birth: date
Mode of Entry : string
Permanent Address : string
Contact Address : string
Next of kin : string
Kins Address : string
Year of Entry : integer
Local govt. : string
Level : integer
Entry Level : integer
Nationality: string
Student status : Boolean
Total Credit Offered : integer
Total credit Passed : integer
Current session : string
GradePointAverage : float
Cumm_ GradePointAverage: float
Previous_GPA : float
Performance : float

Add()
Delete()
Edit()
Find()

Age()

CourseReport: Object
Parents: Course, Department, Student

Course : Object
Department : Object
Student:Object
session : string

AttendanceSheet()
MarkSheet()
CourseSheet()

RegisterCourses: Object
Parents : Course, Student

Course : Object
Session : string
Student: Object

AddCourse ()
DropCourse ()
SubmitCourses ()

ScoreEntry: Object
Parents : Course, Student

Course : Object
Session : string
Score : integer
Grade : integer
Student : Object

UpdateScore ()
ProcessGrade()

 StudentResult: Object
Parent : Major

Major : Object
Session : string

Collate () [collate scores]
GPA ()
CGPA ()
Promote()
WithdrawResults()

DepartmentReport: Object
Parent : Programme

Programme: Object
Session : string
Level : integer

RegistrationList ()
PerformanceList()
Student Data ()
Broadsheet Result()

Suspension : Object
Parent : Major

Major : Object
Session : string

Suspend ()

WithholdResult : Object
Parent : Major

Major: Object
Session : string
NGReason : string

Withhold()
Release()

 4

3.2 Inheritance Hierarchy in SPERU

A representation of the object class hierarchy showing the inheritance relationship among

objects is shown in figure 3.2 after successfully identifying the objects.

Figure 3.2 Class Hierarchy in SPERU

Department

Department

Report

Course

Course

Report

Programme

Student

Minor
Major

ScoreEntry

Register

Course

StudentResult

Suspend

StudentReport

WithholdResult

N.B: Rectangular boxes are used to represent objects. The Arrow is indicative of the phrase

„inherits from‟ .

 5

3.3 Object Aggregation in SPERU

Object aggregation is generally used to illustrate the static structure of an object-oriented

system. It shows the details of how different objects are „part of‟ other objects. This makes it

possible to identify objects that can be represented as sub-objects of other objects.

The object aggregation in SPERU is shown in Figure 3.3

Figure 3.3

 SPERU

 University Department Course Student User

Minor Major

Programme
Department

Report

ScoreEntry RegisterCourses

CourseReport

 

 

 

  

  

 

  

 

 

 …

 …
 …

 …

 …

 …
  

 …

N.B: The aggregation is shown using links annotated with circular blob
meaning „part of‟. The ellipses suggest that further details about objects are
not shown.

WithholdResult RegisterCourses StudentResult StudentReport ScoreEntry

     

Suspension

 

Aggregation of SPERU Objects

 6

3.4 Object Interaction in SPERU

The Object interaction phase of the design process reveals the dynamic structure of object to

object interaction within the system when the system is executing. In order words, it shows how

objects interacts with one another, how service calls and requests are passed between different

objects. Figure 3.4 shows the object interaction among some of the objects in SPERU.

Figure 3.4 Interactions Of SPERU Objects

Department

Attendance

Sheet

Mark Sheet

 Course Sheet

CourseReport

Course Department

Update scores

Process grade

SoreEntry

Major Department RegisterCourses

Minor

Add Course

Drop Course

Submit

Course

RegisterCourses

Course Registration process

Course Report generation

 Entry of scores

 Student Result processing

University
SsTUDENTrES

ULTtudentResu

lt

Collate

Result

Compute

GPA

 Compute

CGPA

Promote

Department
StudentResult

Withdraw

Results

 7

Department suspension Major
Programme

Suspension

Registration

List

Performance

List

 Student Data

Broadsheet

Department
Department

Report

Add

Delete

 Edit

List

Department
Course

Add

Delete

 Edit

List

Department
Major

Department

Sessional

Transcript

Final year

Transcript

StudentReport
Department

 Programme suspension

 Generation of Student Report

 Departmental Reports

 Course Entry process

 Biodata input for Major students

 8

Add

Delete

 Edit

List

Department
Minor

Add

Withdraw

 Edit

browse

Department
User

 Biodata input for Minor students

 Allocation of User access

 Withhold

Result

Release

Result

Department
Major

Withholding of results

N.B: The rectangular boxes give the name of the requested service or operation. The

direct arrows indicates direct request from object to object. The arrow shows the direction

of service call.

 9

3.5 Object Interface Design for SPERU

Now, that we have represented, in details, the static and dynamic structure of objects within the

SPERU , we can now show the specification of the object design interfaces. This involves

defining the types of the object attributes, the signatures and semantics of the objection

operations as shown below.

Notation : The C++ programming language notation is used to denote the object interfaces:

Figure 3.5 : Object Interfaces in SPERU

University

Class University_Object {
Public:
 char* name;
 char* location;
 char* yearfounded;
 char* session;
 int currentyear;
};

Department

Class Department_Object {
 Public:

char* faculty;
char* Departmentname;
char* Deptcode;

Private:
Void Add (char* deptcode);
Void Delete (char* deptcode);
Void Edit (char* deptcode);
};

Programme

Class Programme_Object {
Public :
 char* programmename;
 char* degree;
 int duration;
 int lastlevel;
 department_Object Department;
};

Student

Class Student_Object {
Public :
char* name;
char* matricno;
};

Minor

Class Minor_Object {
Public :
 Department_Object Department;
 Student_Object student;
Private:
 Add (char* student.matricno);
 Delete (char* student.matricno);
 Edit (char* student.matricno);
 Browse ();
};

Course

Class Course_Object {
Public

char * course_code;
char* course_title;
char* course_credit
char*course_category;
char* course_lecturer;
char* InternalExaminer;
char* ExternalExterminer;
char* course_content;
char* course_semester;

Private:
 void Add (char* course_code);

void Delete (char* course_code);
void Edit (char* course_code);
void List(char* course_code);

};

RegisterCourses

Class RegisterCourses {
Public:

 Student_Object ThisStudent;
 char * session;
 Course_object ThisCourse;
Private:
 void Addcourse (char* ThisCourse.course_code);
 void Dropcourse(char * ThisCourse.course_code);
 void Submitcourses(char* ThisStudent.MatricNo);
};

 ScoreEntry

Class ScoreEntry {
Public:
Student_Object ThisStudent;
 char* session;
 Course_object ThisCourse;
Private:
 void UpdateScore (char* ThisCourse.course_code);
 void ProcessGrade(char * ThisCourse.course_code);
};

Suspension

Class Suspend_Object {
Public:
 Major_Object Majorstudent;
 char* session;
Private:
 Suspend(Major_Object Majorstudent , char* session);
 };

 10

Major

Class Major_object {
Public:
 Student_Object student;
 Programme_Object programme;
Private:
 Char* fullname;
 Unsigned photograph;
 char * date_of_Birth;
 char* mode_of_entry;

char* perm_address;
char* cont_address;
char* Next_of_kin
char* kin_address;
char* local_govt;
char* nationality;
char* currentsession;
Bool student_status;
int TotCreditOfferd;
int TotCreditPassed;
float GPA;
float CGPA;
float PGPA;
char * Perfomance;

 void Add(char * student.matricno);

 void delete(char *
student.matricno);

void Edit(char * student.matricno);
 void Age(char * student.matricno);
};

StudentResult

Class StudentResult {
Public:
 Major_Object Majorstudent;
 char* session;
Private:
 void Collate (Major_Object Majorstudent , char* session);
 float GPA (Major_Object Majorstudent , char* session);
 float CGPA (Major_Object Majorstudent , char* session);
};

StudentReport

Class StudentReport {
Public:
 Major_Object Majorstudent;
 char* session;
Private:
 void sessionalTranscript (Major_Object Majorstudent , char*
session);
 float FinalYearResult(Major_Object Majorstudent , char* session);
 };

DepartmentReport

Class DepartmentReport {
Public:
 Programme_Object ThisProgramme;
 char* session;
Private:
 void RegistrationList (Programme_Object ThisProgramme , char* session);
 float PerformanceList(Programme_Object ThisProgramme , char* session);
 float BroadsheetResult(Programme_Object ThisProgramme , char* session);
 };

CourseReport

Class CourseReport {
Public:

 Course_Object ThisCourse;
 Student_Object ThisStudent;
 Department_Object HostDepartment;
char* session;
Private:

void AttendanceSheet (Department_Object HostDepartment, Course_Object
ThisCourse, Student_Object ThisStudent, char* session);

float MarkSheet(Department_Object HostDepartment ,Course_Object ThisCourse,
Student_Object ThisStudent, char* session);
float CourseSheetResult(Department_Object HostDepartment ,Course_Object
ThisCourse, Student_Object ThisStudent, char* session);

 };

Department

Class User {
 Public:

char* Userid;
char* Accesscode;
char* Assesslevel;

 Private:
Void Add (char* Accesscode);
Void Delete (char* Accesscode);
Void Edit (char* Accesscode);

};

After the specification of the Object interfaces, SPERU
was implemented using a rapid application
development tool (programming language) known as
Borland C++ Builder.

Borland C++ Builder is an object-oriented programming
language that contain in totality all the features of C++
spiced with many visual and non–visual programming
tools to make an ideal RAD programming environment.
It provides a platform for the development of applications
that combine the awesome power of the C++ language
together with the flair and fun of the Windows

environment.

 11

4. QUALITY ASSESSMENT PARAMETERS APPLIED TO SPERU

The main objective of the software design process is to produce a good quality designs

that are cost effective to implement and maintain. In this section we apply relevant

software metrics to the SPERU system to predict its product quality.

4.1 Design Quality Metrics Applied to SPERU

A software metric is any type of measurement, which relates to a software system.

Software engineering metrics are used to characterize software engineering product e.g.

design, program codes, test cases, process etc. to determine their success or failure.

Metrics could be predictive (predictor metrics) or control metrics. Predictor metric predicts

product quality while control metrics provide information about process quality.

[7] The

key emphases of the design quality assessment are correctness and maintainability.

However, maintainability cannot be measured directly, it is rather closely linked to the

following four main attributes: cohesion, coupling, understandability and adaptability

which when investigated in respect of SPERU, reveals as follows:

4.1.1 Cohesion in SPERU

 The class hierarchy diagram in Figure 3.2, reveals a high degree of cohesion.

This is a natural feature of most object-oriented systems. The SPERU is composed of

individual cohesive objects each of which encapsulates its own attributes and operations.

The objects: Course, Department University, and Student have the highest level of

cohesion within SPERU because they are all super classes. While Objects:

CourseReport, StudentReport, RegisterCourses, Major, Minor have a reduced level of

cohesion because they inherit attributes from a super class. (Yourdon and Constantine,

1979), noted that the higher the level of inheritance within a system, the lower the level of

cohesion. SPERU is therefore a very cohesive system.

4.1.2 Coupling in SPERU

Coupling is closely related to cohesion, infact it is concerned with how independent the

components are. It indicates strength of interconnection between components in a design

(See Figure 3.2 “Class Hierarchy”). SPERU as an object-oriented system is a loosely

coupled system. The nature of objects: Course, Student, and Department whose

representations are concealed within the object and not made visible to external

components makes this true. The inheritance features in objects : CourseReport,

StudentReport, Minor, and Major produce a different form of coupling, which makes this

 12

objects coupled to their superclasses. Changes made to a superclass are automatically

propagated to all subclasses.

4.1.3 Understandability of SPERU

 The understandability of a design depends largely on cohesion, coupling,

meaningful names, documentation and complexity. Understandability deals with how

easy is it to comprehend the design. Complexity deals with how complex is it to

implement the components. High complexity implies many relationship between different

part of a design component. As illustrated in the SPERU class hierarchy, not many

nested object relationships exist, thus, limiting the complexity. The inheritance features of

subclasses (Major, Minor, CourseReport) concealed some design details which is good

for understandability.

4.1.4 Adaptability of SPERU

This is a general estimate of how easy it is to change the design. A loosely coupled

system design like SPERU posses high adaptability. New components (objects) can be

created which inherit the attributes and operations of original components, and only the

attributes and operations, which need to be changed, will be modified.

4.2 Program Quality Metrics Applied to SPERU

Generally, program quality assessments are similar to those of the design. Programs

should be free of defects and maintainable. The key predictor metrics we can apply to

SPERU are listed below:

4.2.1 Length of Code

 This is a measure of the size of the program. Generally, the larger the size of the

codes of a program component, the more complex and error prone that component is

likely to be. The table below (Table 5.2.1) gives a listing of the length of codes for some

object interfaces implemented in C++

Builder environment.

 13

Table 4.2.1 Length of SPERU Program Codes

S/No Object Implementation Length of Code
(No. of lines)

1. DepartmentReport 430

2. ScoreEntry 375

3. StudentReport 366

4. StudentResult 344

5. RegisterCourses 290

6. CourseReport 206

7. Major (Biodata) 139

8. Course 69

9. User 57

10. Minor (Biodata) 49

11. Suspend 32

12. Programme 30

13. University 22

14. Department 22

 Total 2431

 Average 162.07

SPERU Code size = Average code size * Number of function points.

The application of RAD tools in SPERU has led to a compact code size, which readily projects it,

as one that is less error prone.

4.2.2 Cyclomatic Complexity

This is a measure of the control complexity of a program. The number of independent paths in a

program can be determined by computing the cyclomatic complexity of the program flow graph

(Mccabe, 1976, 1983).

The cyclomatic complexity (CC) of any program graph G can be determined using the formula:

CC(G) = Number (edges) – Number(nodes) + 1

For programs without GOTO statements, the cyclomatic complexity is simply equal to the number

of conditions in the program. Compound conditions with N simple predicates are counted as N

conditions e.g. if A==B and A==C.

Metric Rule : The value of the cyclomatic complexity is a measure of the internal complexity of a

program. Low value of this metric may correlate with understandable program and design, which

also indicates easily maintainable programs.

 Fig 4.2.2 shows the cyclomatic identity of the RegisterCourses interface of SPERU.

 14

Binary Graph for Registercourses Object Interface

Figure 4.2.2

In Figure 4.2.2 ,the independent paths through the binary flow graph are:

(i) 1 2 3 4 9

(ii) 1 2 3 5 6 7 8 2 3 4 9

(iii) 1 2 3 5 6 7 9

If the paths are executed then,

a) we can be sure that every statement in the routine has been executed ones, and

b) every condition has been exercised for true and false condition.

5. Desirable Features of SPERU

The choice of object-oriented software engineering approach for the design of SPERU

,coupled with the application of RAD tools in its implementation brings about a number

of attendant benefits. Some of these are:

1. Maintainability

This software is very maintainable. The presence of cohesive objects which are loosely

coupled together i.e. they are acceptably independent of each other makes it very easy to

1

2

3

5

6

8

4

7

9

While Not

EOF

Increment credit

offered

Exceed maximum

Credit?

Start

IF

EOF

 15

maintain the program. New features could be added to the system by simply modeling

them as new objects. Hence, changes to parts of the system could be effected without

necessarily starting from the scratch. Also other parts of the system, which need not be

affected by such changes are left intact. The understandability and adaptability provided

by the nature of the design also promote maintainability.

2. Reliability

SPERU has every attribute of a reliable system. The object-oriented model approach to

the design and implementation ensures a good level of fault-tolerance. Facilities are

provided to ensure that operations are allowed to continue when faults cause system

failure. Also fault tracking and detection is easier because of the object-oriented design

of the SPERU system. Fault avoidance is also at an appreciable level because the

SPERU system was carefully designed and sufficiently tested with the aim of producing a

fault-free system.

3. Usability

The SPERU software was designed to make it easy to use. It has a built-in help facilities

and very friendly user interfaces. The software is window based and event driven, with

provision of relevant menu items from which the user can make selection. The SPERU

main user interface has such simple modules like Register, Collate, Produce, Manage

which are simple terms to describe the key activities within the system.

4. Reusability and Extendibility

The object-oriented implementation promotes reusability, whenever there is need to

extend the SPERU specification to accommodate new user requirements. Also, the

existing objects within the system could be readily used to compose some of the new

objects desired.

5. Correctness

A major plus of the SPERU program is that it fits its requirement. All functionalities

specified in the user requirement have been meticulously attended to and provided for in

the SPERU software.

6. Portability

 The SPERU program is quite portable, the optimal code size and optimal usage of

system resources like Memory and Hard disk, makes it easy to implement in different

environments. The Installable version could be provided on a CD-ROM, which can be

distributed to many environments.

 16

7. Ease in programming Effort

A lot of ease and relief is brought to the software implementation of the design without

compromising speed, efficiency and creativity through the availability of visual RAD tools.

These tools helped in conserving a lot of programming time and effort in such activities

like multiple interface design, Database access and connection, production of reports and

display of records.

8. Security

SPERU provides maximum security of data, ensuring that the integrity of data is

maintained and restricting unauthorized access.

6.0 Conclusion

The example of SPERU as a sample case of application of object-oriented software

engineering principles provides an instance of a new and more efficient concept in the

creation of software products. It also attests to the beauty and brilliance of the object-

oriented paradigm in the modelling of real-world problems like the Undergraduate

Registration and Examination Processing in Tertiary institutions.

 References:

1. Coad, P., and Yourdon, E., (1991): Object-oriented analysis, 2
nd

 ed., Yourdon Press,

Prentice-Hall, Englewood Cliffs, N.J. pp [86-256]

2. Robinson, P.J. (1992) : Hierarchical object-oriented design; Prentice-Hall, Englewood

Cliffs, N.J. pp [213-249]

3. Jacobsen, I., Christensen M.; Johnson, P., and Overgaard, G. (1992): Object-oriented

software engineering; Addison- Wesley, England. pp [215-256]

4. Booch, G. (1994): Object-oriented analysis and design; Benjamin-Cummings, U.S.A

pp [107-215]

5. Somerville, I. (1998): Software engineering; Addison Wesley; England. pp [207-285]

6. Abbort, R. (1983): Program design by informal English descriptions; Communications of

the ACM; 26(11), 882-94 [256]

7. Shlaer, S., and Mellor, S.J. (1998): Object-oriented systems analysis; Yourdon press,

Englewood Cliffs, N.J. pp [256]

 17

8. Fenton, N.E.(1991): Software metrics; A rigorous approach; Chapman and Hall, England.

pp [132]

9. Yourdon E. and Constantine, L.L.(1979) : Structured design; Prentice-Hall, Englewood

Cliffs N.J. pp [213-630]

10. McCabe, T.J. (1976): A complexity measure, IEEE transaction on software engineering;

SE–2 pp [308-320]

11. McCabe, T.J. (1983): A Cyclomatic complexity measure, IEEE transaction on software

engineering; Vol. 9.

12. Budgen, D (1994): Software design; Addison-Wesley, England. pp [200-213]

13. Jamsa, K. and Klander, L. (1998): C/C++ Programmers Bible; Jamsa Press, Las Vegas,

U.S.A.

14. Ince, D. (1994): ISO9001 and software quality assurance; MCGraw-Hill, England. pp

[613,676]

15. Davies, A.M. (1993): Software requirements: Objects, Functions and States; Prentice-

Hall; U.S.A, pp [64]

