Oyeyemi, Kehinde D. and Aizebeokhai, A. P. and Olaojo, A. A. and Okon, Emmanuel E. (2023) Hydrogeophysical Investigation in Parts of the Eastern DahomeyBasin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Managemen. Water, 15 (2862).
PDF
Download (10MB) |
Abstract
Geoelectrical resistivity measurements were conducted in five locations within the eastern portion of the Dahomey basin for the purpose of subsurface evaluation and detecting saturated zones. The locations are Covenant University (L1), Bells University (L2), Oju-Ore-Ilogbo Road (L3), Citation: Oyeyemi, K.D.; Aizebeokhai, A.P.; Olaojo, A.A.; Okon, E.E.; Kalu, D.V.; Metwaly, M. Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management. Water 2023, 15, 2862. https://doi.org/10.3390/w15162862 Academic Editors: María del Carmen Cabrera Santana, Albert Casas Ponsati and Alex Sendros Received: 19 June 2023 Revised: 28 July 2023 Accepted: 30 July 2023 Published: 8 August 2023 Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Obasanjo-Ijagba Road (L4), and Iyana Iyesi (L5). The study was carried out to avert the common challenges of drilling low-yield groundwater boreholes in the area. A total of 30 Vertical Electrical Soundings (VES) and five two-dimensional Electrical Resistivity Tomography (ERT) data sets have been acquired along the study areas. The geoelectrical resistivity results were integrated with the borehole logs to generate the spatial distribution of the subsurface lithologies in the area. The delineated subsurface lithologies include the topsoil (lateritic clay), clayey sand, sandy clay, fine silty sand, coarse sand, and shale/clay units. The fine silty sand and coarse sand units were identified as the two main aquifer units within the area. The depths to the upper aquifer unit in the area include 31.7–96.7 m, 38.5–94.0 m, 30.7–57.5 m, 39.1–63.4 m, and 46.9–57.5 m for locations L1, L2, L3, L4, and L5, respectively. At the same time, the depths to the lower aquifer unit in the area include 43.4–112.7 m, 52.2–108.0 m, 44.2–72.5 m, 53.7–78.5 m, and 63.5–72.9 m for locations L1, L2, L3, L4, and L5, respectively. The estimated hydraulic parameters for both aquifers show they are highly productive with mean porosity, mean hydraulic conductivity, and mean transmissivity of 20–22%, 12.4–17.0 10 2 m/s, 1.56–2.18 m2/s for the upper aquifer, and 48–50%, 371–478 10 2 m/s, 50.00–62.14 m2/s for the lower aquifer. By focusing on these aquifer systems during exploration, sustainable groundwater resources can be secured, providing relief to homeowners within the study area who might otherwise face the frustration of drilling unproductive and low-yield boreholes. However, it is crucial to consider the presence of sub-vertical faults in the study area, as these faults can significantly impact groundwater development and management. These sub-vertical structural faults may lead to changes in the permeability, hydraulic conductivity, and transmissivity of the delineated aquifers, affecting their productivity across the divide and ultimately influencing the overall water availability in the area. Careful consideration of these geological factors is essential for effective aquifer management and sustainable groundwater utilisation
Item Type: | Article |
---|---|
Uncontrolled Keywords: | hydrogeological studies; groundwater; resources management; geoelectrical resistivity; sustainability |
Subjects: | C Auxiliary Sciences of History > CC Archaeology G Geography. Anthropology. Recreation > GE Environmental Sciences Q Science > QC Physics Q Science > QE Geology |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Physics |
Depositing User: | ORIGBOEYEGHA |
Date Deposited: | 07 Aug 2024 08:14 |
Last Modified: | 07 Aug 2024 08:14 |
URI: | http://eprints.covenantuniversity.edu.ng/id/eprint/18368 |
Actions (login required)
View Item |