Ogunrinola, Iyanuoluwa and Akinyemi, M. L. and Aizebeokhai, A. P. and Sule, Rasidi and Sanni, Samuel Eshorame and Boyo, Henry and Omeje, Maxwell and Babalola, P.O. (2023) Silica and kaolin reinforced aluminum matrix composite for heat storage. De Gruyter, 62. pp. 1-13.
PDF
Download (8MB) |
Abstract
This study used aluminum scraps to produce a secondary aluminum metal matrix for heat storage analyses. Silica and kaolin reinforced aluminum metal matrix composites were successfully produced via stir casting. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed for phase and microstructure characterization. XRD revealed alumina (corundum), aluminum and kyanite phases while SEM indicated pores in the composites. Density, average specific heat (from 30 to 200°C), thermal conductivity, and hardness tests were carried out. Total heat energy stored per kg, from 30 to 200°C, was obtained. The inclusion of 7.5 and 15wt% kaolin increased the specific heat of the matrix from 474.3 to 564.57 J·kg−1·°C−1 and 474.3 to 679.03 J·kg−1·°C−1, respectively. Likewise, adding 7.5 and 15 wt% silica sand increased the thermal conductivity of the matrix from 154.99 to 175.62W·m−1·°C−1 and 154.99W·m−1·°C−1 to 181.38W·m−1·°C−1, respectively. The addition of 7.5 wt% silica sand and 7.5 and 15wt% kaolin increased the hardness value of the matrix from 72.11 to 73.11 HB, 72.11 to 81.38 HB, and 72.11 to 82 HB, respectively. Hardness of the composites reinforced with kaolin is higher than that of the composites reinforced with silica sand. This is attributed to the higher molecular weight of kaolin. Significant increase in specific heat and thermal conductivity was achieved.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | kaolin, microstructure, secondary aluminum, silica sand, specific heat |
Subjects: | Q Science > QC Physics |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Physics |
Depositing User: | Patricia Nwokealisi |
Date Deposited: | 15 May 2024 12:04 |
Last Modified: | 15 May 2024 12:04 |
URI: | http://eprints.covenantuniversity.edu.ng/id/eprint/17991 |
Actions (login required)
View Item |